Publications by authors named "E Bazzan"

Cancer is characterized by chronic inflammation and hypercoagulability, with an excess of venous thromboembolism (VTE). Tissue factor, the initiator of blood coagulation, circulates associated with extracellular vesicles (EV-TF). Studies investigating EV-TF between cancer-associated and non-cancer-associated VTE are lacking.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is associated with a significantly increased risk of thrombotic events and mortality. This review explores the complex bidirectional relationship between pulmonary fibrosis and thrombosis, discussing epidemiological evidence, pathogenetic mechanisms, and therapeutic implications, with a particular focus on the emerging role of extracellular vesicles (EVs) as crucial mediators linking fibrosis and coagulation. Coagulation factors directly promote fibrosis, while fibrosis itself activates thrombotic pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies indicate that B cells and autoantibodies are found in idiopathic pulmonary fibrosis (IPF), suggesting the existence of tertiary lymphoid structures (TLS), which are typically not identified in IPF's histological features.
  • The research examines TLS quantity, size, and activation in lung samples from IPF patients at various stages, linking these characteristics to clinical outcomes and disease progression.
  • Results show that the presence and activation of TLS are higher in IPF cases compared to controls, with significant differences noted between rapid and slow progressors, implying that B-cell activity and TLS may influence the disease's mechanism and severity.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) play a pivotal role in a variety of physiologically relevant processes, including lung inflammation. Recent attention has been directed toward EV-derived microRNAs (miRNAs), such as miR-191-5p, particularly in the context of inflammation. Here, we investigated the impact of miR-191-5p-enriched EVs on the activation of NF-κB and the expression of molecules associated with inflammation such as interleukin-8 (IL-8).

View Article and Find Full Text PDF

Depending on local cues, macrophages can polarize into classically activated (M1) or alternatively activated (M2) phenotypes. This study investigates the impact of polarized macrophage-derived Extracellular Vesicles (EVs) (M1 and M2) and their cargo of miRNA-19a-3p and miRNA-425-5p on TGF-β production in lung fibroblasts. EVs were isolated from supernatants of M0, M1, and M2 macrophages and quantified using nanoscale flow cytometry prior to fibroblast stimulation.

View Article and Find Full Text PDF