Publications by authors named "E Battaner"

We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.

View Article and Find Full Text PDF

Fusion proteins created by chromosomal abnormalities are key components of mesenchymal cancer development. The most common chromosomal translocation in liposarcomas, t(12;16)(q13;p11), creates the FUS-CHOP fusion gene. In the past, we generated FUS-CHOP and CHOP transgenic mice and have shown that while FUS-CHOP transgenic develop liposarcomas, mice expressing CHOP, which lacks the FUS domain, display essentially normal white adipose tissue (WAT) development, suggesting that the FUS domain of FUS-CHOP plays a specific and critical role in the pathogenesis of liposarcoma.

View Article and Find Full Text PDF

The most common chromosomal translocation in liposarcomas, t(12;16)(q13;p11), creates the FUS/TLS-CHOP fusion gene. We previously developed a mouse model of liposarcoma by expressing FUS-CHOP in murine mesenchymal stem cells. In order to understand how FUS-CHOP can initiate liposarcoma, we have now generated transgenic mice expressing altered forms of the FUS-CHOP protein.

View Article and Find Full Text PDF

The characteristic t(12;16)(q13;p11) chromosomal translocation, which leads to gene fusion that encodes the FUS-CHOP chimeric protein, is associated with human liposarcomas. The altered expression of FUS-CHOP has been implicated in a characteristic subgroup of human liposarcomas. We have introduced the FUS-CHOP transgene into the mouse genome in which the expression of the transgene is successfully driven by the elongation factor 1alpha (EF1alpha) promoter to all tissues.

View Article and Find Full Text PDF

One of the major problems regarding the administration of amino acids by intravenous feeding is the use of racemic mixtures that are forbidden by the pharmacological regulations; other current problems is the high cost of obtaining pure amino acids. Because of this, our group has been working in the obtention of L-amino acids (assimilables by living organisms) and ketoacids (used by the body as precursors of racemic amino acid mixtures) in a less expensive and simpler way, with the aim of using these products for different pathologies.

View Article and Find Full Text PDF