Among the variety of correlated states exhibited by twisted bilayer graphene, cascades in the spectroscopic properties and in the electronic compressibility occur over larger ranges of energy, twist angle and temperature compared to other effects. This suggests a hierarchy of phenomena. Using a combined dynamical mean-field theory and Hartree calculation, we show that the spectral weight reorganisation associated with the formation of local moments and heavy quasiparticles can explain the cascade of electronic resets without invoking symmetry breaking orders.
View Article and Find Full Text PDFUnconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi surface in these materials. Based on this premise, one would also expect the large class of isostructural and isoelectronic iron germanide compounds to be good superconductors. As a matter of fact, they, however, superconduct at very low temperatures or not at all.
View Article and Find Full Text PDFPhys Rev Lett
November 2010
Recent experiments on iron pnictides have uncovered a large in-plane resistivity anisotropy with a surprising result: The system conducts better in the antiferromagnetic x direction than in the ferromagnetic y direction. We address this problem by calculating the ratio of the Drude weight along the x and y directions, D(x)/D(y), for the mean-field Q=(π,0) magnetic phase diagram of a five-band model for the undoped pnictides. We find that D(x)/D(y) ranges between 0.
View Article and Find Full Text PDFWe examine the magnetic phase diagram of iron pnictides using a five-band model. For the intermediate values of the interaction expected to hold in the iron pnictides, we find a metallic low moment state characterized by antiparallel orbital magnetic moments. The anisotropy of the interorbital hopping amplitudes is the key to understanding this low moment state.
View Article and Find Full Text PDFStem straightness is an important selection trait in Pinus pinaster Ait. breeding programs. Despite the stability of stem straightness rankings in provenance trials, the efficiency of breeding programs based on a quantitative index of stem straightness remains low.
View Article and Find Full Text PDF