Publications by authors named "E Badel"

Hydraulic failure due to xylem embolism has been identified as one of the main mechanisms involved in drought-induced forest decline. Trees vulnerability to hydraulic failure depends on their hydraulic safety margin (HSM). While it has been shown that HSM globally converges between tree species and biomes, there is still limited knowledge regarding how HSM can adjust locally to varying drought conditions within species.

View Article and Find Full Text PDF

Plant cells withstand mechanical stress originating from turgor pressure by robustly maintaining the mechanical properties of the cell wall. This applies at the organ scale as well; many plant stems act as pressurized cylinders, where the epidermis is under tension and inner tissues are under compression. The clavata3 de-etiolated3 (clv3-8 det3-1) double mutant of Arabidopsis thaliana displays cracks in its stems because of a conflict between the mechanical properties of the weak epidermis and over-proliferation of inner stem tissues.

View Article and Find Full Text PDF

Xylem embolism is a significant factor in tree mortality. Restoration of hydraulic conductivity after massive embolization of the vascular system requires the application of positive pressure to the vessels and/or the creation of new conductive elements. Some species generate positive pressure from the root system to propagate pressure in distal, aboveground organs in spring, whereas other species generate positive pressure locally at the stem level during winter.

View Article and Find Full Text PDF

The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae).

View Article and Find Full Text PDF

Frost resistance is the major factor affecting the distribution of plant species at high latitude and elevation. The main effects of freeze-thaw cycles are damage to living cells and formation of gas embolism in tree xylem vessels. Lethal intracellular freezing can be prevented in living cells by two mechanisms, such as dehydration and deep supercooling.

View Article and Find Full Text PDF