Detector simulation and reconstruction are a significant computational bottleneck in particle physics. We develop particle-flow neural-assisted simulations (parnassus) to address this challenge. Our deep learning model takes as input a point cloud (particles impinging on a detector) and produces a point cloud (reconstructed particles).
View Article and Find Full Text PDFFluorinated self-assembled monolayers (SAMs) have been utilized in a variety of applications such as transistors and optoelectronic devices. However, in most SAMs the fluorinated groups could not be positioned in high proximity to the surface due to steric effects. This limitation hinders the direct analysis of the impact of the fluorination level on surface properties.
View Article and Find Full Text PDFAdv Health Sci Educ Theory Pract
November 2024
A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDF