Protein kinase C (PKC) modulators hold therapeutic potential for various diseases, including cancer, heart failure, and Alzheimer's disease. Targeting the C1 domain of PKC represents a promising strategy; the available protein structures warrant the design of PKC-targeted ligands via a structure-based approach. However, the PKC C1 domain penetrates the lipid membrane during binding, complicating the design of drug candidates.
View Article and Find Full Text PDFCooperative molecular contacts play an important role in protein structure and ligand binding. Here, we constructed a PostgreSQL database that stores structural information in the form of atomic environments and allows flexible mining of molecular contacts. Taking the Ser-His-Asp/Glu catalytic triad as a first test case, we demonstrate that the presence of a carboxylate oxygen atom in the vicinity of a His is associated with shorter Ser-OH.
View Article and Find Full Text PDFATP-binding cassette (ABC)-transporters protect tissues by pumping their substrates out of the cells in many physiological barriers, such as the blood-brain barrier, intestine, liver, and kidney. These substrates include various endogenous metabolites, but, in addition, ABC transporters recognize a wide range of compounds, therefore affecting the disposition and elimination of clinically used drugs and their metabolites. Although numerous ABC-transporter inhibitors are known, the underlying mechanism of inhibition is not well characterized.
View Article and Find Full Text PDFMembrane-bound pyrophosphatases (mPPases) regulate energy homeostasis in pathogenic protozoan parasites and lack human homologues, which makes them promising targets in . malaria. Yet only few nonphosphorus inhibitors have been reported so far.
View Article and Find Full Text PDFComputational modeling of membrane proteins is critical to understand biochemical systems and to support chemical biology. In this work, we use a dataset of 448 non-redundant membrane protein chains to expose a "rule" that governs membrane protein structure: free cysteine thiols are not found accessible to oxidative compartments such as the extracellular space, but are rather involved in disulphide bridges. Taking as examples the 1018 three-dimensional models produced during the GPCR Dock 2008, 2010 and 2013 competitions and 390 models for a GPCR target in CASP13, we show that this rule was not accounted for by the modeling community.
View Article and Find Full Text PDF