Publications by authors named "E B Chernokalskaya"

Biological samples present a range of complexities from homogeneous purified protein to multicomponent mixtures. Accurate qualification of such samples is paramount to downstream applications. We describe the development of an MIR spectroscopy-based analytical method offering simultaneous protein quantitation (0.

View Article and Find Full Text PDF

Reduction and alkylation of protein disulfides prior to IEF, when performed directly in a centrifugal ultrafiltration device, provides an effective means of terminating the alkylation reaction, concentrating the proteins for analysis, and removing ionic impurities that interfere with IEF. When cells were lysed in "buffers" that support the activity of enzymes such as lysozyme and benzonase, the conductivity of the resulting lysate was an order of magnitude higher than when lysis was induced by chaotropic urea detergent solutions. Following reduction and alkylation, the conductivity of both lysates was lowered by ultrafiltration to the 0.

View Article and Find Full Text PDF

Proteome analysis represents significant challenges to the existing sample preparation techniques. Traditional methods, such as two-dimensional electrophoresis, typically separate high-molecular-weight proteins while discarding low-molecular-weight species. This approach is well justified considering the complexity of any proteome.

View Article and Find Full Text PDF

The correlation between protein molecular weight and the number of lysine or basic amino acid residues was found to be high for broad range molecular weight standards, subunits of Escherichia coli F1F0-ATP synthase and the translated open reading frame of E. coli. A relatively poor correlation between protein molecular weight and the number of cysteine residues was observed in all cases.

View Article and Find Full Text PDF

Proteomic projects are often focused on the discovery of differentially expressed proteins between control and experimental samples. Most laboratories choose the approach of running two-dimensional (2-D) gels, analyzing them and identifying the differentially expressed proteins by in-gel digestion and mass spectrometry. To date, the available stains for visualizing proteins on 2-D gels have been less than ideal for these projects because of poor detection sensitivity (Coomassie blue stain) or poor peptide recovery from in-gel digests and mass spectrometry (silver stain), unless extra destaining and washing steps are included in the protocol.

View Article and Find Full Text PDF