High-throughput gene expression studies commonly employ pathway analyses to infer biological meaning from lists of differentially expressed genes (DEGs). In toxicology and pharmacology studies, treatment groups are analysed against vehicle controls to identify DEGs and altered pathways. Previously, we empirically quantified false-positive rates of DEGs in gene expression data from pools of vehicle-treated zebrafish embryos to determine appropriate study designs (sample and pool size).
View Article and Find Full Text PDFUnderstanding the mechanisms by which environmental chemicals cause toxicity is necessary for effective human health risk assessment. High-Throughput Transcriptomics (HTTr) can be used to inform risk assessment on toxicological mechanisms, hazards, and potencies. We applied HTTr to elucidate the molecular mechanisms by which Per- and Polyfluoroalkyl Substances (PFAS) cause liver perturbations.
View Article and Find Full Text PDFExposure to environmental pollutants with obesogenic activity is being recognised as one of the contributing factors to the obesity epidemic. Bisphenol A (BPA) has been shown to stimulate adipogenesis in both human and mouse preadipocytes, to increase body weight and affect lipid metabolism in animal and epidemiological studies. Regulatory action and public concern has prompted industry to replace BPA with other structurally similar analogues that may have similar effects.
View Article and Find Full Text PDFMetabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards.
View Article and Find Full Text PDF