Exp Biol Med (Maywood)
January 2021
malaria is a global health problem. Erythrocyte invasion by merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion.
View Article and Find Full Text PDFNearly half of the genes in the genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry.
View Article and Find Full Text PDFBackground: uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria.
Methods: We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay.
Plasmodium falciparum erythrocyte invasion is a multistep process that involves a spectrum of interactions that are not well characterized. We have characterized a 113-kDa immunogenic protein, PF3D7_1431400 (PF14_0293), that possesses coiled-coil structures. The protein is localized on the surfaces of both merozoites and gametocytes, hence the name Plasmodium falciparum surface-related antigen (PfSRA).
View Article and Find Full Text PDFErythrocyte invasion by Plasmodium falciparum merozoites is central to blood-stage infection and malaria pathogenesis. This intricate process is coordinated by multiple parasite adhesins that bind erythrocyte receptors and mediate invasion through several alternate pathways. P.
View Article and Find Full Text PDF