The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the "FilmArray", which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis.
View Article and Find Full Text PDFThe ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 2A (CMT2A) is caused by mutations in the gene MFN2 and is one of the most common inherited peripheral neuropathies. Mfn2 is one of two mammalian mitofusin GTPases that promote mitochondrial fusion and maintain organelle integrity. It is not known how mitofusin mutations cause axonal degeneration and CMT2A disease.
View Article and Find Full Text PDFCharcot-Marie-Tooth Type 2A is a dominantly inherited peripheral neuropathy characterized by axonal degeneration of sensory and motor nerves. The disease is caused by mutations in the mitochondrial fusion gene MFN2. Mfn2 is an integral outer mitochondrial membrane protein composed of a large GTPase domain and two heptad repeat (HR) domains that face the cytoplasm.
View Article and Find Full Text PDFUnderstanding the details of how genetic information is expressed from the separate mitochondrial genome requires a detailed description of the properties of the mitochondrial RNA polymerase. This nuclear-encoded enzyme is necessary and sufficient for the transcription of all mitochondrially encoded genes. Mitochondria from yeast to humans use a single-polypeptide catalytic RNA polymerase related to enzymes from bacteriophage.
View Article and Find Full Text PDF