Publications by authors named "E Alay"

Article Synopsis
  • The study investigates how blast waves from explosions lead to traumatic brain injury through direct (head exposure) and indirect (torso exposure) mechanisms in rats.
  • Researchers conducted experiments using a shock tube with different exposure configurations to evaluate brain tissue changes, focusing on histopathological and immunohistochemical analyses.
  • Findings indicate that significant brain tissue changes were primarily linked to head-only and whole-body exposures, confirming that the direct mechanism plays a major role in causing blast-induced brain injury.
View Article and Find Full Text PDF

The interaction of explosion-induced blast waves with the torso is suspected to contribute to brain injury. In this indirect mechanism, the wave-torso interaction is assumed to generate a blood surge, which ultimately reaches and damages the brain. However, this hypothesis has not been comprehensively and systematically investigated, and the potential role, if any, of the indirect mechanism in causing brain injury remains unclear.

View Article and Find Full Text PDF

This study compared the response of the wearable sensors tested against the industry-standard pressure transducers at blast overpressure (BOP) levels typically experienced in training. We systematically evaluated the effects of the sensor orientation with respect to the direction of the incident shock wave and demonstrated how the averaging methods affect the reported pressure values. The evaluated methods included averaging peak overpressure and impulse of all four sensors mounted on a helmet, taking the average of the three sensors, or isolating the incident pressure equivalent using two sensors.

View Article and Find Full Text PDF

We performed a characterization of the shock wave loading on the response of the specimen representing a simplified head model. A polycarbonate cylinder (2-in. outer diameter, wall thickness: 0.

View Article and Find Full Text PDF

Compressed gas-driven shock tubes are widely used for laboratory simulation of primary blasts by accurately replicating pressure profiles measured in live-fire explosions. These investigations require sound characterization of the primary blast wave, including the temporal and spatial evolution of the static and dynamic components of the blast wave. The goal of this work is to characterize the propagation of shock waves in and around the exit of a shock tube via analysis of the primary shock flow, including shock wave propagation and decay of the shock front, and secondary flow phenomena.

View Article and Find Full Text PDF