Shift work, long work hours, and operational tasks contribute to sleep and circadian disruption in defence personnel, with profound impacts on cognition. To address this, a digital technology, the SleepSync app, was designed for use in defence. A pre-post design study was undertaken to examine whether four weeks app use improved sleep and cognitive fitness (high performance neurocognition) in a cohort of shift workers from the Royal Australian Air Force.
View Article and Find Full Text PDFEvidence now suggests that traumatic-stress impacts brain functions even in the absence of acute-onset post-traumatic stress disorder (PTSD) symptoms. These neurophysiological changes have also been suggested to account for increased risks of PTSD symptoms later developing in the aftermath of subsequent trauma. However, surprisingly few studies have explicitly examined brain function dynamics in high-risk populations, such as combat exposed military personnel without diagnosable PTSD.
View Article and Find Full Text PDFThe ability to detect and subsequently correct errors is important in preventing the detrimental consequences of sleep loss. The Error Related Negativity (ERN), and the error positivity (Pe) are established neural correlates of error processing. Previous work has shown sleep loss reduces ERN and Pe, indicating sleep loss impairs error-monitoring processes.
View Article and Find Full Text PDFBackground: Psychological stress-related injuries within first-responder organizations have created a need for the implementation of effective stress management training. Most stress management training solutions have limitations associated with scaled adoption within the workforce. For instance, those that are effective in civilian populations often do not align with the human performance culture embedded within first-responder organizations.
View Article and Find Full Text PDF