Publications by authors named "E Abot"

Background: A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector.

View Article and Find Full Text PDF

Malaria is caused by parasites of the genus , which are transmitted to humans by the bites of mosquitoes. After the elimination of , it is predicted that will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against malaria. In this study, we assessed the immunogenicity and protective efficacy of two antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in monkeys.

View Article and Find Full Text PDF

: A radiation-attenuated (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. : The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects.

View Article and Find Full Text PDF

Background: In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development.

View Article and Find Full Text PDF

We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities.

View Article and Find Full Text PDF