: 3D printing technology has gained considerable interest in the domain of orbital illnesses owing to its capacity to transform diagnosis, surgery planning, and treatment. This systematic review seeks to deliver a thorough examination of the contemporary applications of 3D printing in the treatment of ocular problems, encompassing tumors, injuries, and congenital defects. This systematic review of recent studies has examined the application of patient-specific 3D-printed models for preoperative planning, personalized implants, and prosthetics.
View Article and Find Full Text PDFBackground: Brain calcifications, found in various conditions, may be incidental or crucial for diagnosis. They occur in physiological changes, infections, genetic diseases, neurodegenerative conditions, vascular syndromes, metabolic disorders, endocrine disorders, and primary tumors like oligodendroglioma. While often incidental, their presence can be vital for accurate diagnosis.
View Article and Find Full Text PDFObjective: To examine and compare the accuracy of measurements obtained from photogrammetric models versus direct measurements taken on dry skulls, with the aim to verify the feasibility of photogrammetry for quantitative analysis in microsurgical neuroanatomy.
Methods: Two dry human skulls were used. Each was scanned using the dual camera system of a smartphone The selected photos were separately processed using 2 different softwares to create three-dimensional models.
Background: Glioblastoma (GBM) is an extremely aggressive brain tumor that has few available treatment options and a dismal prognosis. Recent research has highlighted the potential of extracellular vesicles (MSC-EVs) produced from mesenchymal stem cells as a potential treatment approach for GBM. MSC-EVs, including exosomes, microvesicles, and apoptotic bodies, perform a significant function in cellular communication and have shown promise in mediating anti-tumor effects.
View Article and Find Full Text PDF