Detailed analysis of the unique broadband millimeter-wave (70-360 GHz) collision-induced absorption spectra in pure CO and in its mixture with Ar is presented. The nature of the observed continuum absorption is examined using classical trajectory simulation along with statistical physics consideration. Bimolecular continuum is decomposed in the phase space into separate contributions from the so-called free, quasibound, and true bound molecular pairs, the proportions of which greatly vary with temperature.
View Article and Find Full Text PDFA high-sensitivity sensor for measuring moisture content in the air or air humidity under low pressure was designed on the basis of a half-wave coaxial microwave cavity. The method of measuring small variations in the signal phase at a cavity excitation frequency of 1.63 GHz was applied to detect low densities of water vapor.
View Article and Find Full Text PDFThe results of a rigorous study of the two first pure rotational transitions of CO perturbed by Ar are presented. The experimental part is based on the use of three different spectrometers covering together the pressure range from 0.02 up to 1500 torr.
View Article and Find Full Text PDFNew experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature.
View Article and Find Full Text PDFWater dimers (H(2)O)(2) are believed to affect Earth's radiation balance and climate, homogeneous condensation, and atmospheric chemistry. Moreover, the pairwise interaction which binds the dimer appears to be of paramount importance for expounding a complete molecular description of the liquid and solid phases of water. However, there have been no secure, direct observations of water dimers at environmentally relevant temperatures despite decades of studies.
View Article and Find Full Text PDF