Publications by authors named "E A Permyakov"

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy.

View Article and Find Full Text PDF

SGNH hydrolase-like fold proteins are serine proteases with the default Asp-His-Ser catalytic triad. Here, we show that these proteins share two unique conserved structural organizations around the active site: (1) the Nuc-Oxy Zone around the catalytic nucleophile and the oxyanion hole, and (2) the Acid-Base Zone around the catalytic acid and base. The Nuc-Oxy Zone consists of 14 amino acids cross-linked with eight conserved intra- and inter-block hydrogen bonds.

View Article and Find Full Text PDF

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines.

View Article and Find Full Text PDF

Background: Small Ca-binding protein parvalbumin possesses two strong Ca/Mg- binding sites located within two EF-hand domains. Most parvalbumins have no tryptophan residues, while cod protein contains a single tryptophan residue, which fluorescence (spectrum maximum position and fluorescence quantum yield) is highly sensitive to the Ca association/dissociation.

Objective: Intrinsic protein fluorescence of cod parvalbumin can be used for elucidating the mechanism of Ca binding to this protein.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) inhibitors (anti-TNFs) represent a cornerstone of the treatment of various immune-mediated inflammatory diseases and are among the most commercially successful therapeutic agents. Knowledge of TNF binding partners is critical for identification of the factors able to affect clinical efficacy of the anti-TNFs. Here, we report that among eighteen representatives of the multifunctional S100 protein family, only S100A11, S100A12 and S100A13 interact with the soluble form of TNF (sTNF) in vitro.

View Article and Find Full Text PDF