The cross section of the process e^{+}e^{-}→π^{+}π^{-} has been measured in the center-of-mass energy range from 0.32 to 1.2 GeV with the CMD-3 detector at the electron-positron collider VEPP-2000.
View Article and Find Full Text PDFIn this Letter we report an observation of interference effects in Compton scattering in the experiment held on the VEPP-2000 collider. Infrared laser radiation was scattered head-on the 990 MeV electrons inside the dipole magnet, where an electron orbit radius is about 140 cm. It was observed that the energy spectrum of backscattered photons, measured by a HPGe detector, differs from that defined by the Klein-Nishina cross section and scattering kinematics of free electrons.
View Article and Find Full Text PDFThe effects of electron clouds on positively charged beams have been an active area of research in recent years at particle accelerators around the world. Transverse beam-size blowup due to electron clouds has been observed in some machines and is considered to be a major limiting factor in the development of higher-current, higher-luminosity electron-positron colliders. The leading proposed mechanism for beam blowup is the excitation of a fast head-tail instability due to short-range wakes within the electron cloud.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2002
Analytic calculation and numerical simulations reveal a multiline structure in the spectrum of coherent dipole oscillations in the colliding beam system due to coupled synchrobetatron beam-beam modes. The model employed in the analysis involves linearization of the beam-beam kick and takes into account the fact that the length of the colliding bunches is finite. In the present paper, we discuss the behavior of the synchrobetatron beam-beam modes, obtained both analytically and numerically, and compare it with the experimental results for the VEPP-2M collider.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2002
In positron and proton storage rings, electrons produced by photoemission, ionization, and secondary emission accumulate in the vacuum chamber during multibunch operation with close spacing. A positron or proton bunch passing through this "electron cloud" experiences a force similar to a short-range wake field. This effective wake field can cause a transverse-mode-coupling instability, if the electron-cloud density exceeds a threshold value.
View Article and Find Full Text PDF