Publications by authors named "E A Peets"

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the surrounding DNA sequence affects the repair of double-stranded breaks caused by CRISPR/Cas9, using various genetically modified mouse embryonic stem cell lines.
  • Researchers analyzed over 236,000 mutation outcomes from 2800 synthetic DNA sequences, discovering specific roles of DNA repair proteins like Prkdc and Polm in generating small insertions and deletions.
  • They developed predictive models for these mutational outcomes based on their findings, enhancing the understanding of DNA repair mechanisms and enabling more accurate control of CRISPR-induced mutations.
View Article and Find Full Text PDF

Mutagenic outcomes of CRISPR/Cas9-generated double-stranded breaks depend on both the sequence flanking the cut and cellular DNA damage repair. The interaction of these features has been largely unexplored, limiting our ability to understand and manipulate the outcomes. Here, we measured how the absence of 18 repair genes changed frequencies of 83,680 unique mutational outcomes generated by Cas9 double-stranded breaks at 2,838 synthetic target sequences in mouse embryonic stem cells.

View Article and Find Full Text PDF

Most short sequences can be precisely written into a selected genomic target using prime editing; however, it remains unclear what factors govern insertion. We design a library of 3,604 sequences of various lengths and measure the frequency of their insertion into four genomic sites in three human cell lines, using different prime editor systems in varying DNA repair contexts. We find that length, nucleotide composition and secondary structure of the insertion sequence all affect insertion rates.

View Article and Find Full Text PDF

CRISPR/Cas base editors promise nucleotide-level control over DNA sequences, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and find that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, acting to widen or narrow the effective editing window.

View Article and Find Full Text PDF