Rotationally resolved Fourier-transform spectra of laser-induced fluorescence A1Σu+∼b3Πu→X1Σg+ of K2 molecules were recorded and analyzed, yielding 4053 term values of the spin-orbit (SO) coupled A ∼ b complex of the 39K2 isotopologue with ∼0.01 cm-1 accuracy. Their compilation with 1739 term values from previously published sources allowed them to cover the energy range [9955, 17 436] cm-1 from the bottom of the lower-lying b3Πu state up to the vicinity of the atomic asymptote 4s2S12 + 4p2P12, with a rotational quantum number J ∈ [0, 149].
View Article and Find Full Text PDFThe oscillation continuum in laser-induced fluorescence spectra of bound-free cΣ → aΣ and (4)Σ → XΣ transitions of the KCs molecule was recorded by a Fourier-transform spectrometer and modeled under the adiabatic approximation. The required interatomic potentials for ground aΣ and XΣ states were reconstructed in an analytical Chebyshev-polynomial-expansion form in the framework of the regularization direct-potential-fit procedure based on the simultaneous consideration of experimental line positions from Ferber et al. [Phys.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2021
The non-adiabatic electronic matrix elements, LΠΣ(R), that arise from the spin-conserving electron-rotational interactions between all mΣ+ and mΠ states, where multiplicity m = 1, 3, converging to the lowest three dissociation limits of Li-containing alkali diatomics, LiM (M = Na, K, Rb), were calculated ab initio up to large internuclear distances, R. The required electronic wavefunctions were obtained within the framework of the multi-reference configuration interaction treatment of the two-valence-electron problem constructed using small-core scalar-relativistic effective core potentials and l-independent core-polarization potentials. A least squares analysis of the ab initio functions at large internuclear distances in conjunction with long-range perturbation theory (LRPT) revealed three different asymptotic behaviors of the LΠΣ(R → +∞)-functions: const.
View Article and Find Full Text PDFThe spin-orbit (SO) interactions in low-lying electronic states of the LiM (M = Na, K, Rb, Cs) molecular series are studied through ab initio calculations of potential energy curves and SO coupling matrix elements as functions of the interatomic distance, R. Two different approaches are employed: (a) the Fock-space relativistic coupled-cluster calculations (FS-RCC) which directly yield full relativistic energies, U(R); the SO coupling functions, ξ(R), are extracted a posteriori through projecting scalar-relativistic wave functions onto the subspaces spanned by their full-relativistic counterparts; (b) the evaluation of the scalar-relativistic electronic energies, U(R), and relevant ξ(R) functions using the configuration interaction method with core-valence correlation accounted for using core polarization potentials (CI-CPP). The SO-free potentials and SO coupling functions obtained within the framework of both approaches are in good agreement with each other and their prior theoretical and empirical counterparts.
View Article and Find Full Text PDFThe ab initio electronic transition dipole moments (ETDMs) of heteronuclear dimers XY (X, Y = Li, Na, K, Rb) were calculated between the ground and excited states converging to the lowest three dissociation limits. The spin-allowed ETDMs were evaluated in a wide range of interatomic distances, R, by means of the quasi-relativistic electronic wave functions obtained by the multi-reference configuration interaction method. The inner-shell electrons (2 electrons for Li and Na atoms, and 10 and 28 for K and Rb, respectively) were described using the non-empirical shape-consistent effective core potentials.
View Article and Find Full Text PDF