Publications by authors named "E A Ortenberg"

Nanoliter scale real-time PCR uses spatial multiplexing to allow multiple assays to be run in parallel on a single plate without the typical drawbacks of combining reactions together. We designed and evaluated a panel based on this principle to rapidly identify the presence of common disease agents in dogs and horses with acute respiratory illness. This manuscript describes a nanoscale diagnostic PCR workflow for sample preparation, amplification, and analysis of target pathogen sequences, focusing on procedures that are different from microliter scale reactions.

View Article and Find Full Text PDF

Respiratory tract infections caused by influenza A and B viruses often present nonspecifically, and a rapid, high-throughput laboratory technique that can identify influenza viruses is clinically and epidemiologically desirable. The PLEX-ID Flu assay (Abbott Molecular Inc., Des Plaines, IL) incorporates multilocus PCR and electrospray ionization-mass spectrometry to detect and differentiate influenza A 2009 H1N1 (H1N1-p), seasonal H1N1 (H1N1-s), influenza A H3N2, and influenza B viruses in nasopharyngeal swab (NPS) specimens.

View Article and Find Full Text PDF

Micro RNA (miRNAs) are a class of 17-25 nucleotides noncoding RNAs that have been shown to have critical functions in a wide variety of biological processes. Measuring quantity of miRNAs in tissues of different physiological and pathological conditions is an important first step to investigate the functions of miRNAs. To this date, the number of identified miRNA consists of around 850 different species, and more sequence-predicted miRNA genes are awaiting experimental confirmation.

View Article and Find Full Text PDF

Single nucleotide polymorphism (SNP) analysis of human DNA for the purpose of identification has some promising attributes. The question of approach is critical to the eventual adoption of this technology. The use of a low-volume open array platform was tested with a small selected set of eight SNP primers that have a low F(ST) (the proportion of the total genetic variance contained in a subpopulation [S subscript] relative to the total genetic variance [T subscript]) in human populations.

View Article and Find Full Text PDF

Background: Diagnostics and disease-management strategies require technologies to enable the simultaneous detection and quantification of a wide range of pathogenic microorganisms. Most multiplex, quantitative detection methods available suffer from compromises between the level of multiplexing, throughput and accuracy of quantification. Here, we demonstrate the efficacy of a novel, high-throughput, ligation-based assay for simultaneous quantitative detection of multiple plant pathogens.

View Article and Find Full Text PDF