Publications by authors named "E A Newberry"

The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic.

View Article and Find Full Text PDF

Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice.

View Article and Find Full Text PDF

In light of the impact of airway barrier leaks in COVID-19 and the significance of vitamin D in COVID-19 outcomes, including airway barrier protection, we investigated whether the very common dietary flavonoid quercetin could also be efficacious in supporting airway barrier function. To address this question, we utilized the widely used airway epithelial cell culture model, Calu-3. We observed that treating Calu-3 cell layers with quercetin increased transepithelial electrical resistance while simultaneously reducing transepithelial leaks of 14C-D-mannitol (Jm) and 14C-inulin.

View Article and Find Full Text PDF

Obesity and the metabolic syndrome are complex disorders resulting from multiple factors including genetics, diet, activity, inflammation, and gut microbes. Animal studies have identified roles for each of these, however the contribution(s) specifically attributed to the gut microbiota remain unclear, as studies have used combinations of genetically altered mice, high fat diet, and/or colonization of germ-free mice, which have an underdeveloped immune system. We investigated the role(s) of the gut microbiota driving obesity and inflammation independent of manipulations in diet and genetics in mice with fully developed immune systems.

View Article and Find Full Text PDF