Publications by authors named "E A Lukyanets"

Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance.

View Article and Find Full Text PDF

Antibacterial photodynamic therapy (APDT) is a promising method of treating local infected foci, in particular, surgical and burn wounds, trophic and diabetic ulcers. Photodynamic inactivation (PDI) is able to effectively destroy bacterial cells without them developing resistance in response to treatment.This work was dedicated to the study of photophysical and antibacterial properties of new photosensitizers (PS) based on polycationic phthalocyanines and synthetic bacteriochlorins for photodynamic inactivation of P.

View Article and Find Full Text PDF

An unprecedented stable neutral radical nickel(II) complex of 3,5-bis(dimedonyl)azadiisoindomethene (1) was prepared by the direct reaction between 1,3-diiminoisoindoline and dimedone. A new radical complex 1 has an intense and narrow absorption at 1008 nm and can be reduced to a less stable anionic [1] with a typical aza(dibenzo)boron dipyrromethene (aza-BODIPY) UV-vis spectrum. Complex 1, along with two other colored condensation reaction products 2 and 3, was characterized by spectroscopy and X-ray crystallography, while the paramagnetic nature of 1 was probed by EPR and SQUID methods.

View Article and Find Full Text PDF

Nanoparticles of aluminum and zinc phthalocyanin and metal-free phthalocyanin (AlPc, ZnPc, and H2Pc), whose molecular forms are photosensitizers, can serve as effective "prophotosensitizers" in photodynamic therapy for malignant tumors. Transition (stimulation) of photo-inert nanoparticles into a photoactive photosensitizer is realized locally in the tumor node by its exposure to potent laser pulses. Systemic injection of AlPc, ZnPc, and H2Pc nanoparticles has not led to accumulation of their photoactive form in the skin, which can lead to the development of skin phototoxicity.

View Article and Find Full Text PDF

The efficiency of photodynamic therapy with photosensitizer Tiosens (Russia) was evaluated in mono- and combined therapy of rats with malignant gliomas (glioblastoma 101/8, oligodendroglioma 14-4-9, and C6 glioma). The efficiency of photodynamic monotherapy was not high: the animals died from brain edema developing in tumor tissue and in the adjacent normal cerebral tissue. Pathomorphological studies of tumor tissue detected necrosis and apoptosis, destruction of vessels with hemorrhages, and vascular thrombosis.

View Article and Find Full Text PDF