T cell hematological cancer has a complex interplay with host immune cells, but the ability to experimentally discriminate transferred cancer cells from host cells by flow cytometry is technically challenging. Here, we present a flow cytometry protocol to evaluate cancer cell and host immune phenotypes following transplant of a T cell lymphoma bearing a congenic marker (CD45.2) into a syngeneic host (CD45.
View Article and Find Full Text PDFPeripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1 ) through immune-competent mice.
View Article and Find Full Text PDFVessel co-option is a non-angiogenic mechanism of tumour vascularisation in which cancer cells utilise pre-existing blood vessels instead of inducing new blood vessel formation. Vessel co-option has been observed across a range of different tumour types, in both primary cancers and metastatic disease. Importantly, vessel co-option is now implicated as a major mechanism that mediates resistance to conventional anti-angiogenic drugs and this may help to explain the limited efficacy of this therapeutic approach in certain clinical settings.
View Article and Find Full Text PDFAll solid tumours require a vascular supply in order to progress. Although the ability to induce angiogenesis (new blood vessel growth) has long been regarded as essential to this purpose, thus far, anti-angiogenic therapies have shown only modest efficacy in patients. Importantly, overshadowed by the literature on tumour angiogenesis is a long-standing, but continually emerging, body of research indicating that tumours can grow instead by hijacking pre-existing blood vessels of the surrounding nonmalignant tissue.
View Article and Find Full Text PDFmTOR inhibition can promote or inhibit immune responses in a context dependent manner, but whether this will represent a net benefit or be contraindicated in the context of immunooncology therapies is less understood. Here, we report that the mTORC1/2 dual kinase inhibitor vistusertib (AZD2014) potentiates anti-tumour immunity in combination with anti-CTLA-4 (αCTLA-4), αPD-1 or αPD-L1 immune checkpoint blockade. Combination of vistusertib and immune checkpoint blocking antibodies led to tumour growth inhibition and improved survival of MC-38 or CT-26 pre-clinical syngeneic tumour models, whereas monotherapies were less effective.
View Article and Find Full Text PDF