Publications by authors named "E A Kolobova"

Alzheimer's disease (AD) is a multifactorial systemic disease that is triggered, at least in part, by the accumulation of β-amyloid (Aβ) peptides in the brain, but it also depends on immune system-mediated regulation. Recent studies suggest that B cells may play a role in AD development and point to the accumulation of clonally expanded B cells in AD patients. However, the specificity of the clonally expanded B cells is unknown, and the contribution of Aβ-specific B cells to AD pathology development is unclear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression.

View Article and Find Full Text PDF

Background & Aims: The xenobiotic efflux pump P-glycoprotein is highly expressed on the apical membrane of the gastrointestinal tract, where it regulates the levels of intracellular substrates. P-glycoprotein is altered in disease, but the mechanisms that regulate the levels of P-glycoprotein are still being explored. The molecular motor myosin Vb (Myo5b) traffics diverse cargo to the apical membrane of intestinal epithelial cells.

View Article and Find Full Text PDF

In this study, we propose an approach to the synthesis of new biodegradable polymer materials based on renewable raw feedstock (betulin) and derivatives of hydroxycarboxylic acids using a catalyst/catalytic system (γ-AlO, γ-AlO/TBHP) that is safe for health and the environment. The resulting polymers are linear thermoplastic polymers that undergo collapse upon melting in the presence of atmospheric oxygen. Moreover, these polymers demonstrate non-toxicity towards a range of Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF

In this study, we developed physically adsorbed multi-layer coatings using poly-l-lysine or poly(diallyldimethylammonium chloride) and gold nanoparticles, which were functionalized with bovine serum albumin for the chiral separation in electrochromatography. The approach involves sequentially depositing positively charged polymers and negatively charged citrate-stabilized gold nanoparticles. By repeating this modification cycle, we created two- and four-layer coatings, which were sequentially functionalized with albumin forming three- and five-layer coatings that were finally applied for the separation of enantiomers of dl-tryptophan.

View Article and Find Full Text PDF