A catalogue of neuronal cell types has often been called a 'parts list' of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven to be essential for understanding fly vision. Here we analyse the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity.
View Article and Find Full Text PDFMany animals use visual information to navigate, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction by integrating visual input from ER neurons, which are part of the anterior visual pathway (AVP). Here we densely reconstruct all neurons in the AVP using electron-microscopy data.
View Article and Find Full Text PDFMany animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In , compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data.
View Article and Find Full Text PDFA catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of , rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity.
View Article and Find Full Text PDFColor and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in , and we have used light microscopy to confirm many of our findings.
View Article and Find Full Text PDF