Proc Natl Acad Sci U S A
November 2024
It is well recognized that changes in the extracellular concentration of calcium ions influence the excitability of neurons, yet what mechanism(s) mediate these effects is still a matter of debate. Using patch-clamp recordings from rat hippocampal CA1 pyramidal neurons, we examined the contribution of G-proteins and intracellular calcium-dependent signaling mechanisms to changes in intrinsic excitability evoked by altering the extracellular calcium concentration from physiological (1.2 mM) to a commonly used experimental (2 mM) level.
View Article and Find Full Text PDFThe excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature.
View Article and Find Full Text PDFGFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat.
View Article and Find Full Text PDFPrevious studies have shown that inhibition of TNF family member FN14 (gene: ) in colon tumors decreases inflammatory cytokine expression and mitigates cancer-induced cachexia. However, the molecular mechanisms underlying the regulation of FN14 expression remain unclear. Tumor microenvironments are often devoid of nutrients and oxygen, yet how the cachexic response relates to the tumor microenvironment and, importantly, nutrient stress is unknown.
View Article and Find Full Text PDF