Publications by authors named "E A Gurvitz"

The ever-growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand-new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light-matter interactions.

View Article and Find Full Text PDF

Being the polymorphs of calcium carbonate (CaCO), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites.

View Article and Find Full Text PDF

Dielectric photonics platform provides unique possibilities to control light scattering via utilizing high-index dielectric nanoantennas with peculiar optical signatures. Despite the intensively growing field of all-dielectric nanophotonics, it is still unclear how surrounding media affect scattering properties of a nanoantenna with complex multipole response. Here, we report on light scattering by a silicon cubic nanoparticle embedded in lossless media, supporting optical resonant response.

View Article and Find Full Text PDF

Optical activity is a fundamental phenomenon originating from the chiral nature of crystals and molecules. While intrinsic chiroptical responses of ordinary chiral materials to circularly polarized light are relatively weak, they can be enhanced by specially tailored nanostructures. Here, nanorod metamaterials, comprising a dense array of vertically aligned gold nanorods, is shown to provide a significant enhancement of the circular dichroism response of an embedded material.

View Article and Find Full Text PDF

The transformation optics cloak was proposed for the medium with the angle dependent tensors of permittivity and permeability consisted of the right-handed and left-handed metamaterial media. The cloaking effect was numerically simulated using finite element method in the terahertz frequency range for different wave sources. The impact of cloaking medium thickness on the invisibility effect was demonstrated.

View Article and Find Full Text PDF