Publications by authors named "E A Goremychkin"

Article Synopsis
  • The study investigates a specific aryl base compound and its deutero-variant using various scientific methods, including neutron scattering and spectroscopy.
  • The research identifies that a strong hydrogen bond present in the compound behaves like a quasi-aromatic bond and classifies its vibrational modes through detailed spectral analysis.
  • Furthermore, the study explores the polymorphism of the compound under different temperatures using X-ray diffraction techniques, revealing important structural insights.
View Article and Find Full Text PDF

Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases.

View Article and Find Full Text PDF

In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions.

View Article and Find Full Text PDF

We report inelastic neutron scattering experiments on a single crystal of the intermediate valence compound CePd3. At 300 K the magnetic scattering is quasielastic, with half-width Γ = 23 meV, and is independent of momentum transfer Q. At low temperature, the Q-averaged magnetic spectrum is inelastic, exhibiting a broad peak centered near Emax = 55 meV.

View Article and Find Full Text PDF

High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe₂As₂ parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies.

View Article and Find Full Text PDF