Publications by authors named "E A Glazunov"

Klebsiella pneumoniae is associated with a variety of infections, such as pneumonia, urogenital infection, liver abscess, and bloodstream infection. It is especially dangerous for patients in medical facilities, where it can cause ventilator-associated pneumonia or intensive care unit-acquired pneumonia. The emergence of multidrug-resistant and hypervirulent strains as well as the ability to form biofilms on various medical devices complicates the treatment of such infections and makes the use of antibiotics ineffective.

View Article and Find Full Text PDF

Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body.

View Article and Find Full Text PDF

Five mutant forms of glucoamylase (GA) from the filamentous fungus Aspergillus awamori with artificial disulfide bonds (4D-G137A\A14C, 6D-A14C\Y419C\G137A, 10D-V13C\G396C, 11D-V13C\G396C\A14C\Y419C\G137A, and 20D-G137A\A246C\A14C) were constructed using computer simulation and experimentally tested for thermostability. The introduction of two additional disulfide bonds between its first and thirteenth alpha-helices and that of the loop located close to a catalytic residue--E400--made it possible to assess the effects of disulfide bridges on protein thermostability. The mutant proteins with combined amino acid substitutions G137A\A14C, V13C\G396C\A14C\Y419C\G137A, and G137A\A246C\A14C showed higher thermal stability as compared to the wild-type protein.

View Article and Find Full Text PDF

The Desulfurococcus amylolyticus RadA protein (RadA(Da)) promotes recombination at temperatures approaching the DNA melting point. Here, analyzing ATPase of the RadA(Da) presynaptic complex, we described other distinguishing characteristics of RadA(Da). These include sensitivity to NaCl, preference for lengthy single-stranded DNA as a cofactor, protein activity at temperatures of over 100 degrees C, and bimodal ATPase activity.

View Article and Find Full Text PDF