Publications by authors named "E A Chernitsky"

The kinetic and concentration dependences of erythrocyte vesiculation and hemolysis induced by sodium dodecyl sulfate were studied. The similarity of the slopes of the dose dependence of the SDS-induced vesiculation and slow hemolysis rates in the double logarithmic coordinates suggested a close relation between the processes of vesiculation and pore formation for slow hemolysis by the detergent. Further evidence of the competitive nature of the detergent-induced vesiculation and fast hemolysis by sodium dodecyl sulfate was obtained.

View Article and Find Full Text PDF

The influence of pH of the medium on the parameters of detergent-induced fast hemolysis and vesiculation of human erythrocytes was studied. In the range of pH 6.3-7.

View Article and Find Full Text PDF

The effect of osmotic protectors (sucrose and polyethylene glycols) and of a decrease in the detergent concentration at different points of hemolysis of human erythrocytes by sodium dodecyl sulphate on the shape of kinetic curves of hemolysis were studied. It is shown that slow detergent-induced hemolysis follows the colloid-osmotic mechanisms. Evidence is provided that rapid hemolysis by sodium dodecyl sulphate is caused by opening of large pores sufficient for the release of hemoglobin molecules rather than by the colloid-osmotic mechanism, and that the kinetics of hemolysis is mainly determined by time dependence of the opening probability of these pores.

View Article and Find Full Text PDF

The size of pores arising in human erythrocytes under the action of two detergents (Triton X-100 and sodium dodecyl sulfate) and causing the slow component of hemolysis was estimated by the method of osmotic protectors. The pore diameters were found to be about 40 A. The pores responsible for the fast component of hemolysis induced by sodium dodecyl sulfate were shown to be of greater size and even molecules of polyethylene glycol 4000 could pass through them.

View Article and Find Full Text PDF

The numbers of Triton X-100 and sodium dodecyl sulfate molecules required to form respective pores were estimated from the relationship between the detergent concentrations and the rates of fast and slow hemolysis components. It has been found that the slow hemolysis component evoked by Triton X-100 is related to the existence of two different pores. It is shown that the fast hemolysis component induced by sodium dodecyl sulfate is associated with the modification of phosphatidylcholine which determines the break in the Arrhenius plots of the hemolysis rate within the range of 20 degrees C.

View Article and Find Full Text PDF