Unlike the blood, the interstitial fluid and the deriving lymph are directly bathing the cellular layer of each organ. As such, composition analysis of the lymphatic fluid can provide more precise biochemical and cellular information on an organ's health and be a valuable resource for biomarker discovery. In this study, we describe a protocol for cannulation of mouse and rat lymphatic collectors that is suitable for the following: the "omic" sampling of pre- and postnodal lymph, collected from different anatomical districts; the phenotyping of immune cells circulating between parenchymal organs and draining lymph nodes; injection of known amounts of molecules for quantitative immunological studies of nodal trafficking and/or clearance; and monitoring an organ's biochemical omic changes in pathological conditions.
View Article and Find Full Text PDFCollecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs.
View Article and Find Full Text PDFBackground: Until now, there has been no tool available to provide lymphatic researchers the ability to perform experiments in tissue explants containing lymphatic vessels under tissue position- and lymphatic lumen-controlled conditions.
Methods And Results: In this article we provide technical details and description of the method of using the newly developed and implemented the position- and lymphatic lumen-controlled tissue chambers to study live lymphatic vessels and surrounding tissues ex vivo. In this study, we, for the first time, performed detailed comparative analysis of the contractile and pumping activity of rat mesenteric lymphatic vessels (MLVs) situated within tissue explants mounted in new tissue chambers and isolated, cannulated, and pressurized rat MLVs maintained in isolated vessel setups.
Objectives: The knowledge of the basic principles of lymphatic function, still remains, to a large degree, rudimentary and will require significant research efforts. Recent studies of the physiology of the MLVs suggested the presence of an EDRF other than NO. In this study, we tested the hypothesis that lymphatic endothelium-derived histamine relaxes MLVs.
View Article and Find Full Text PDFThe principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats.
View Article and Find Full Text PDF