Publications by authors named "E A Ashley"

Background: The six-minute walk test (6MWT) is a prognostic sub-maximal exercise test used clinically as a measure of functional capacity. With the emergence of advanced sensors, 6MWTs are being performed remotely via smartphones and other devices. The My Heart Counts Cardiovascular Health Study is a smartphone application that serves as a digital platform for studies of human cardiovascular health, and has been used to perform 30,475 6MWTs on 8922 unique participants.

View Article and Find Full Text PDF

Background: Females with hypertrophic cardiomyopathy present at a more advanced stage of the disease and have a higher risk of heart failure and death. The factors behind these differences are unclear. We aimed to investigate sex-related differences in clinical and genetic factors affecting adverse outcomes in the Sarcomeric Human Cardiomyopathy Registry.

View Article and Find Full Text PDF

TAR DNA-binding protein (TDP-43) and Metastasis Associated Lung Adenocarcinoma Transcript (MALAT1) RNA are both abundantly expressed in the human cell nucleus. Increased interaction of TDP-43 and MALAT1, as well as dysregulation of TDP-43 function, was previously identified in brain samples from patients with neurodegenerative disease compared to healthy brain tissues. We hypothesized that TDP-43 function may depend in part on MALAT1 expression levels.

View Article and Find Full Text PDF

Cardiac wall motion abnormalities (WMA) are strong predictors of mortality, but current screening methods using Q waves from electrocardiograms (ECGs) have limited accuracy and vary across racial and ethnic groups. This study aimed to identify novel ECG features using deep learning to enhance WMA detection, referencing echocardiography as the gold standard. We collected ECG and echocardiogram data from 35,210 patients in California and labeled WMA using unstructured language parsing of echocardiographic reports.

View Article and Find Full Text PDF

While the cost of genome sequencing has decreased, -80°C DNA preservation and raw sequence data archiving remain expensive. Transitioning to room-temperature DNA preservation could reduce costs, lessen researchers' reliance on the electrical grid, and encourage a future proofing strategy of periodical updating with higher quality sequencing instead of long-term storage of raw signal data. A new technology recently described by Prince et al.

View Article and Find Full Text PDF