Publications by authors named "E A Ainsbury"

Purpose: In cases of radiological or nuclear events, biological dosimetry enables decisions whether an individual was exposed to ionizing radiation and the estimation of the dose. Several statistical methods are used to assess uncertainties. The stringency of the applied method has an impact on the lowest dose that can be detected.

View Article and Find Full Text PDF

Ionizing radiation is of huge benefit to society; however, the risks of radiation overexposure in occupational settings or due to accidents or other incidents are of growing concern, not least due to the potential implications for exposed individuals in terms of acute high dose (e.g. ARS) and/or longer term low dose health effects such as cancer or genetic effects.

View Article and Find Full Text PDF

Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.

View Article and Find Full Text PDF

Introduction: Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy).

Methods: Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.

View Article and Find Full Text PDF

Purpose: The purpose of this paper is to provide an overview of the methodology used to estimate radiation genetic risks and quantify the risk of hereditary effects as outlined in the ICRP Publication 103. It aims to highlight the historical background and development of the doubling dose method for estimating radiation-related genetic risks and its continued use in radiological protection frameworks.

Results: This article emphasizes the complexity associated with quantifying the risk of hereditary effects caused by radiation exposure and highlights the need for further clarification and explanation of the calculation method.

View Article and Find Full Text PDF