Purpose: Pancreatic adenocarcinoma is an aggressive disease with poor clinical outcomes. Primary pancreatic tumors originating from the head of the pancreas (H) have different prognostic implications than tumors arising from the body and tail (BT). This is thought to be largely due to anatomic differences, as molecular underpinnings of survival have not been fully explored.
View Article and Find Full Text PDFBackground: About 25% of pancreatic cancers harbour actionable molecular alterations, defined as molecular alterations for which there is clinical or strong preclinical evidence of a predictive benefit from a specific therapy. The Know Your Tumor (KYT) programme includes US patients with pancreatic cancer and enables patients to undergo commercially available multi-omic profiling to provide molecularly tailored therapy options and clinical trial recommendations. We sought to determine whether patients with pancreatic cancer whose tumours harboured such actionable molecular alterations and who received molecularly matched therapy had a longer median overall survival than similar patients who did not receive molecularly matched therapy.
View Article and Find Full Text PDFGermline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents-offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.
View Article and Find Full Text PDFWhole-genome sequencing and whole-exome sequencing are becoming more widely applied in clinical medicine to help diagnose rare genetic diseases. Identification of the underlying causative mutations by genome-wide sequencing is greatly facilitated by concurrent analysis of multiple family members, most often the mother-father-proband trio, using bioinformatics pipelines that filter genetic variants by mode of inheritance. However, current pipelines are limited to Mendelian inheritance patterns and do not specifically address disorders caused by mutations in imprinted genes, such as forms of Angelman syndrome and Beckwith-Wiedemann syndrome.
View Article and Find Full Text PDFJ Biol Chem
April 2013
Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F.
View Article and Find Full Text PDFNeurotropic flaviviruses can efficiently replicate in the developing and mature central nervous systems (CNS) of mice causing lethal encephalitis. Insertion of a single copy of a target for brain-expressed microRNAs (miRNAs) in the 3' noncoding region (3'NCR) of the flavivirus genome (chimeric tick-borne encephalitis virus/dengue virus) abolished virus neurovirulence in the mature mouse CNS. However, in the developing CNS of highly permissive suckling mice, the miRNA-targeted viruses can revert to a neurovirulent phenotype by accumulating deletions or mutations within the miRNA target sequence.
View Article and Find Full Text PDFWe previously showed the feasibility of using locked nucleic acid (LNA) for flow cytometric-fluorescence in situ hybridization (LNA flow-FISH) detection of a target cellular mRNA. Here we demonstrate how the method can be used to monitor viral RNA in infected cells. We compared the results of the LNA flow-FISH with other methods of quantifying virus replication, including the use of an enhanced green fluorescent protein (EGFP) viral construct and quantitative reverse-transcription polymerase chain reaction.
View Article and Find Full Text PDFTransition metal complexes [Co(cyclen)(NH(3))(2)](ClO(4))(3)H(2)O (cyclen=1,4,7,10-tetraazacyclododecane) (2), [Co(NH(3))(5)(OH(2))](CF(3)SO(3))(3) (3) [Ni(NH(3))(6)]Br(2) (4) and [Ru(NH(3))(6)]Cl(3) (5) were tested against Sindbis infected baby hamster kidney (BHK) cells and show differential effects from the previously reported anti-viral complex [Co(NH(3))(6)]Cl(3) (1). The macrocyclic complex 2 and labile aqua complex 3 show either no or little effect on the survival on Sindbis virus-infected cells as compared to that for 1, which show a monotonic increase in % BHK cell survival. Nickel and ruthenium ammine complexes 4 and 5 had a moderate influence of cell survival.
View Article and Find Full Text PDFBackground: Nucleofection is an emerging technology for delivery of nucleic acids into both the cytoplasm and nucleus of eukaryotic cells with high efficiency. This makes it an ideal technology for gene delivery and siRNA applications. A 96-well format has recently been made available for high-throughput nucleofection, however conditions must be optimized for delivery into each specific cell type.
View Article and Find Full Text PDFWe present a novel method using flow cytometry-fluorescence in situ hybridization (flow-FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. beta-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to beta-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry.
View Article and Find Full Text PDFBackground: Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e.
View Article and Find Full Text PDFWe have investigated the potential antiviral activity of three cobalt(III) compounds. Two compounds, Co(III)-cyclen-methylbenzoic acid and its methyl ester derivative, are based on the macrocyclic chelator, cyclen, and were synthesized in our laboratory. Both compounds have been shown to bind tightly to nucleic acids and to hydrolyze phosphodiester bonds.
View Article and Find Full Text PDFIn response to limited nitrogen and abundant carbon sources, diploid Saccharomyces cerevisiae strains undergo a filamentous transition in cell growth as part of pseudohyphal differentiation. Use of the disaccharide maltose as the principal carbon source, in contrast to the preferred nutrient monosaccharide glucose, has been shown to induce a hyper-filamentous growth phenotype in a strain deficient for GPA2 which codes for a Galpha protein component that interacts with the glucose-sensing receptor Gpr1p to regulate filamentous growth. In this report, we compare the global transcript and proteomic profiles of wild-type and Gpa2p deficient diploid yeast strains grown on both rich and nitrogen starved maltose media.
View Article and Find Full Text PDFExcessive globin mRNA in whole blood RNA decreases transcript detection sensitivity and increases signal variation on microarrays. Hence, methods based on peptide nucleic acid inhibitory oligos and biotinylated DNA capture oligos have been developed to reduce globin mRNA. However, there is limited information about the effects of these two methods on gene expression profiles.
View Article and Find Full Text PDFThe exponential growth of pathogen nucleic acid sequences available in public domain databases has invited their direct use in pathogen detection, identification, and surveillance strategies. DNA microarray technology has offered the potential for the direct DNA sequence analysis of a broad spectrum of pathogens of interest. However, to achieve the practical attainment of this potential, numerous technical issues, especially nucleic acid amplification, probe specificity, and interpretation strategies of sequence detection, need to be addressed.
View Article and Find Full Text PDFMetal ion-chelator catalysts based on main-group, lanthanide, or transition metal complexes have been developed as nonenzymatic alternatives for the hydrolysis of the phosphodiester bonds in DNA and RNA. Cobalt (III), with its high-charge density, is known for its ability to hydrolyze phosphodiesters with rate constants as high as 2 x 10(-4) s(-1). We have developed a kinetically inert Co(III)-cyclen-based complex, Co(III)-cycmmb that is very potent in inhibiting the translation of RNA into protein.
View Article and Find Full Text PDFThe cessation of the adenovirus vaccination program for military trainees has resulted in several recent acute respiratory disease (ARD) outbreaks. In the absence of vaccination, rapid detection methods are necessary for the timely implementation of measures to prevent adenovirus transmission within military training facilities. To this end, we have combined a fluorogenic real-time multiplex PCR assay with four sets of degenerate PCR primers that target the E1A, fiber, and hexon genes with a long oligonucleotide microarray capable of identifying the most common adenovirus serotypes associated with adult respiratory tract infections (serotypes 3, 4, 7, 16, and 21) and a representative member of adenovirus subgroup C (serotype 6) that is a common cause of childhood ARD and that often persists into adulthood.
View Article and Find Full Text PDFGenome-wide expression studies of human blood samples in the context of epidemiologic surveillance are confronted by numerous challenges-one of the foremost being the capability to produce reliable detection of transcript levels. This led us to consider the Paxgene Blood RNA System, which consists of a stabilizing additive in an evacuated blood collection tube (PAX tube) and a sample processing kit (PAX kit). The PAX tube contains a solution that inhibits RNA degradation and gene induction as blood is drawn into the tube.
View Article and Find Full Text PDFWith the increased threat posed by biological weapons, detection techniques for biothreat pathogens are critically needed to monitor and assess the severity of the illness once exposure has occurred. Current approaches for detecting biological threats are either time-consuming or highly specific but provide little information regarding pathogenicity. Genotyping of pathogens by PCR provides a fast and definitive means for identifying pathogens, but reliance on pathogen genotypic endpoints has several limitations.
View Article and Find Full Text PDFViruses form a significant class of bio-threat agents. Currently, the only method to determine the bioactivity of viruses in vitro is to measure viral and cellular responses after co-incubation of cells with virus. Our goal is to find biomarkers for classification of agents, establishment of bioactivity, and/or prediction of disease outcomes.
View Article and Find Full Text PDFThe effects of extracellular matrix (ECM) components on the outcomes of alphavirus interaction with cells are not known. Studies that address such interactions have to address several methodological difficulties, including: the survival of the cells within the matrix; the passage of the virus through the matrix to infect embedded cells; and the dissociation of cells and matrix into single-cell suspension, before and after virus infection, for quantitative analysis. Herein, these issues were addressed in the context of a model system of collagen as the ECM component, baby hamster kidney (BHK) cells, and Sindbis virus.
View Article and Find Full Text PDF