Background: HuR/ELAV1, a ubiquitous RNA-binding protein, belongs to the RNA-binding protein family and is crucial for stabilizing and regulating the translation of various mRNA targets, influencing gene expression. Elevated HuR levels are associated with multiple disorders, including cancer and neurodegenerative diseases. Despite the identification of small molecule inhibitors targeting HuR, their detailed characterization remains limited.
View Article and Find Full Text PDFMitochondrial functional assays using MitoPlates™ S-1 allow us to characterize mitochondria in terms of substrate metabolism. MitoPlates™ are 96-well microplates pre-coated with a diverse set of substrates. The electron flow from NADH and FADH producing mitochondrial substrates is measured based on the reduction of redox dye, that acts as a terminal electron acceptor.
View Article and Find Full Text PDFThere is increasing evidence of mitochondrial dysfunction in autism spectrum disorders (ASD), but the causal relationships are unclear. In an ASD patient whose identical twin was unaffected, we identified a postzygotic mosaic mutation p.Q639* in the TRAP1 gene, which encodes a mitochondrial chaperone of the HSP90 family.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties.
View Article and Find Full Text PDFMatrix metalloproteinase-9 (MMP-9) belongs to the family of endopeptidases expressed in neurons and secreted at the synapse in response to neuronal activity. It regulates the pericellular environment by cleaving its protein components. MMP9 is involved in activity-dependent reorganization of spine architecture.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) cells circulate between blood and bone marrow niche, representing different microenvironments. We studied the role of the two RNA-binding proteins, T-cell-restricted intracellular antigen (TIAR), and the fragile X mental retardation protein (FMRP) in the regulation of protein translation in CML cells residing in settings mimicking peripheral blood microenvironment (PBM) and bone marrow microenvironment (BMM). The outcomes showed how conditions shaped the translation process through TIAR and FMRP activity, considering its relevance in therapy resistance.
View Article and Find Full Text PDFPseudouridine (Ψ) is an RNA base modification ubiquitously found in many types of RNAs. In humans, the isomerization of uridine is catalyzed by different stand-alone pseudouridine synthases (PUS). Genomic mutations in the human pseudouridine synthase 3 gene (PUS3) have been identified in patients with neurodevelopmental disorders.
View Article and Find Full Text PDFAs microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.
View Article and Find Full Text PDFAccumulating evidence indicates that mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases. Both of these conditions are often associated with an increase in protein aggregation. However, still unknown are the specific defects of mitochondrial biology that play a critical role in the development of Alzheimer's disease, in which Tau protein aggregates are observed in the brains of some patients.
View Article and Find Full Text PDFBreaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1).
View Article and Find Full Text PDFProtein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in in six unrelated individuals with varying degrees of intellectual disability or developmental delay.
View Article and Find Full Text PDFBackground And Purpose: The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity.
Experimental Approach: To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala.
Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) represents a genetic condition, in which the clinical manifestations are caused by the disinhibition of the mammalian target of rapamycin (mTOR) pathway due to mutations in the TSC1 (hamartin) or TSC2 (tuberin) genes. The deregulated mTOR activity leads to multi-site tumors, including subependymal giant cell astrocytoma (SEGA). SEGA is a brain tumor that affects around 15% of TSC patients.
View Article and Find Full Text PDFPPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.
View Article and Find Full Text PDFProtein tyrosine phosphatase non-receptor type 4 (PTPN4) encodes non-receptor protein tyrosine phosphatase implicated in synaptic plasticity and innate immune response. The only report of PTPN4-associated disease described a neurodevelopmental disorder associated with a whole gene deletion. We describe a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems with a novel mosaic de novo variant in PTPN4 (hg19 chr2:g.
View Article and Find Full Text PDFNeuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs.
View Article and Find Full Text PDFExperience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation.
View Article and Find Full Text PDFBackground: Here we describe a detailed, reliable protocol for isolation of polysomal fractions from mouse brain synaptoneurosomes. This method is an important tool to study local protein synthesis in neurons.
New Method: We combined rapid preparation of synaptoneurosomes by filtration with polysome profiling.
Matrix metalloproteinase 9 (MMP-9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype-based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the rs20544 C/T single-nucleotide polymorphism (SNP) located in the 3'untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP-9 activity and the morphology of dendritic spines.
View Article and Find Full Text PDFMir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity.
View Article and Find Full Text PDFAlthough memories appear to be elusive phenomena, they are stored in the network of physical connections between neurons. Dendritic spines, which are actin-rich dendritic protrusions, serve as the contact points between networked neurons. The spines' shape contributes to the strength of signal transmission.
View Article and Find Full Text PDFHAX-1, a multifunctional protein involved in the regulation of apoptosis, cell migration, and calcium homeostasis, binds the 3' untranslated region motifs of specific transcripts. This suggests that HAX-1 plays a role in post-transcriptional regulation, at the level of mRNA stability/transport or translation. In this study, we analyze in detail HAX-1 colocalization with processing bodies (P-bodies) and its dependence on mRNA availability.
View Article and Find Full Text PDFActivity-dependent protein synthesis at synapses is dysregulated in the Fragile X syndrome (FXS). This process contributes to dendritic spine dysmorphogenesis and synaptic dysfunction in FXS. Matrix Metalloproteinase 9 (MMP-9) is an enzyme involved in activity-dependent reorganization of dendritic spine architecture and was shown to regulate spine morphology in a mouse model of FXS, the Fmr1 knock-out mice.
View Article and Find Full Text PDFFragile X syndrome (FXS) is a neurodevelopmental disorder characterized by lack of the FMR1 protein, FMRP, a translational repressor. Its absence leads to up-regulation of locally translated proteins involved in synaptic transmission and plasticity, including the matrix metalloproteinase-9 (MMP-9). In the Fmr1 knock-out (KO), a mouse model of FXS, an abnormal elevated expression of MMP-9 in the brain was pharmacologically down-regulated after treatment with the tetracycline derivative minocycline.
View Article and Find Full Text PDF