Publications by authors named "Dziadek J"

Article Synopsis
  • The analysis explores the impact of the global pandemic and the Russian-Ukrainian war on the epidemiology of multidrug-resistant tuberculosis (MDR-TB) in Poland from 2018 to 2022.
  • There was a notable rise in MDR-TB cases coinciding with the influx of immigrants from high-incidence countries, highlighting concerns about pre-XDR and XDR strains among patients.
  • The Beijing genotype was prevalent among both Polish patients and immigrants, indicating a significant potential for increased transmission of MDR-TB within Poland's population.
View Article and Find Full Text PDF

Introduction: Toxoplasmosis, a zoonotic infection caused by the apicomplexan parasite , affects a significant portion of the global human population. This condition, particularly dangerous for pregnant women and immunocompromised individuals, currently lacks effective treatment options.

Methods:  Eighteen coumarin-based derivatives were synthesized, comprising coumarin-chalcone hybrids (5a-i) and coumarin-pyrazoline hybrids (6a-i).

View Article and Find Full Text PDF

Because resistant variants of the disease are always emerging, tuberculosis is a global issue that affects economies. New antitubercular medications should be developed, and this can be done by inhibiting druggable targets. Enoyl acyl carrier protein (ACP) reductase (InhA) is a crucial enzyme for the survival of (MTB).

View Article and Find Full Text PDF

The spread of drug-resistant tuberculosis strains has become a significant economic burden globally. To tackle this challenge, there is a need to develop new drugs that target specific mycobacterial enzymes. Among these enzymes, InhA, which is crucial for the survival of , is a key target for drug development.

View Article and Find Full Text PDF

Sporadically and periodically, influenza outbreaks threaten global health and the economy. Antigen drift-induced influenza virus mutations hamper antiviral drug development. Thus, a novel antiviral agent is urgently needed to address medication inefficacy issues.

View Article and Find Full Text PDF

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis.

View Article and Find Full Text PDF

In this study, we designed and synthesized a series of coumarin derivatives as antitubercular agents targeting the enoyl acyl carrier protein reductase (InhA) enzyme. Among the synthesized compounds, the tetrazole derivative 4c showed the most potent antitubercular effect with a minimum inhibitory concentration value (MIC) of 15 μg mL against H37Rv and could also inhibit the growth of the mutant strain (Δ). Compound 4c was able to penetrate -infected human macrophages and suppress the intracellular growth of tubercle bacilli.

View Article and Find Full Text PDF

Tuberculosis is a global serious problem that imposes major health, economic and social challenges worldwide. The search for new antitubercular drugs is extremely important which could be achieved via inhibition of different druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA) enzyme is essential for the survival of M.

View Article and Find Full Text PDF

Unlabelled: Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955.

View Article and Find Full Text PDF

Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium.

View Article and Find Full Text PDF

In reference to gene annotation, more than half of the tRNA species synthesized by Mycobacterium tuberculosis require the enzymatic addition of the cytosine-cytosine-adenine (CCA) tail, which is indispensable for amino acid charging and tRNA functionality. It makes the mycobacterial CCA-adding enzyme essential for survival of the bacterium and a potential target for novel pipelines in drug discovery avenues. Here, we described the rv3907c gene product, originally annotated as poly(A)polymerase (rv3907c, PcnA) as a functional CCA-adding enzyme (CCA) essential for viability of M.

View Article and Find Full Text PDF

Introduction: In the course of tuberculosis (TB), the level of major acute phase protein, namely serum amyloid A (hSAA-1), increases up to a hundredfold in the pleural fluids of infected individuals. Tubercle bacilli infecting the human host can be opsonized by hSAA-1, which affects bacterial entry into human macrophages and their intracellular multiplication.

Methods: We applied global RNA sequencing to evaluate the functional response of human monocyte-derived macrophages (MDMs), isolated from healthy blood donors, under elevated hSAA-1 conditions and during infection with nonopsonized and hSAA-1-opsonized ().

View Article and Find Full Text PDF

Background: In many countries tuberculosis (TB) remains a highly prevalent disease and a major contributor to infectious disease mortality. The fight against TB requires surveillance of the population of strains circulating worldwide and the analysis of the prevalence of certain strains in populations. Nowadays, whole genome sequencing (WGS) allows for accurate tracking of TB transmission.

View Article and Find Full Text PDF

It was recently reported that 4-substituted picolinohydrazonamides carrying hydrophilic cyclic amines, such as morpholine and pyrrolidine, at the end of their thiosemicarbazide chain have potent antimycobacterial activity at concentrations below 1 μg/ml. Here, two selected compounds, 2,4-disubstituted pyridine derivatives and , revealed significant bactericidal activity against localized intracellularly within human macrophages, as well as against biofilm-forming tubercle bacilli. Mutants were selected that were resistant to the investigated compounds at an efficiency similar to that identified in the presence of the first line antituberculosis drug rifampicin.

View Article and Find Full Text PDF

Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 "orphan" response regulator in the physiology of and its orthologue Msmeg_2064 in . We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation.

View Article and Find Full Text PDF

Swab, RT-qPCR tests remain the gold standard of diagnostics of SARS-CoV-2 infections. These tests are costly and have limited throughput. We developed a 3-gene, seminested RT-qPCR test with SYBR green-based detection designed to be oversensitive rather than overspecific for high-throughput diagnostics of populations.

View Article and Find Full Text PDF

Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan (), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds.

View Article and Find Full Text PDF

() is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of have led to the re-emergence of tuberculosis as a global pandemic.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen that can adapt to the various nutrients available during its life cycle. However, in the nutritionally stringent environment of the macrophage phagolysosome, Mtb relies mainly on cholesterol. In previous studies, we demonstrated that Mtb can accumulate and utilize cholesterol as the sole carbon source.

View Article and Find Full Text PDF

Cobalamin (vitamin B12) is a structurally complex molecule that acts as a cofactor for enzymes and regulates gene expression through so-called riboswitches. The existing literature on the vitamin B12 synthesis capacity in Mycobacterium tuberculosis is ambiguous, while in non-tuberculous mycobacteria (NTM) is rather marginal. Here we present the results of our investigation into the occurrence of vitamin B12 in mycobacteria.

View Article and Find Full Text PDF

As a very successful pathogen with outstanding adaptive properties, () has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay.

View Article and Find Full Text PDF

Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as , are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of , a free-living and nonpathogenic mycobacterium.

View Article and Find Full Text PDF

Lsr2 is a nucleoid-associated protein (NAP) that has been found strictly in actinobacteria, including mycobacteria. It is a functional homolog of histone-like nucleoid-structuring protein (H-NS); it acts as a DNA-bridging protein that plays a role in chromosomal organization and transcriptional regulation. To date, the studies on Lsr2 have focused mainly on In this study, we analyze the role of Lsr2 as a transcription factor in , a saprophytic bacterium whose natural habitat (soil and water) substantially differs from those of the obligatory mycobacterial pathogens.

View Article and Find Full Text PDF

The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated.

View Article and Find Full Text PDF