Publications by authors named "Dzantiev B B"

A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.

View Article and Find Full Text PDF

To ensure the safety of foodstuffs, widespread non-laboratory monitoring for pathogenic contaminants is in demand. A suitable technique for this purpose is lateral flow immunoassay (LFIA) which combines simplicity, rapidity, and productivity with specific immune detection. This study considered three developed formats of LFIA for Typhimurium, a priority pathogenic contaminant of milk.

View Article and Find Full Text PDF

is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).

View Article and Find Full Text PDF

Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed.

View Article and Find Full Text PDF

Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive.

View Article and Find Full Text PDF

When developing immunochemical test systems, it is necessary to obtain specific antibodies. Their quality depends, among other things, on the immunogen used. When preparing hapten-protein conjugates to obtain antibodies for low-molecular-weight compounds, the key factors are the structure of the hapten itself, the presence of a spacer, the size of the carrier protein and the degree of its modification by hapten molecules.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a rapid and efficient method for DNA amplification, producing concatemers of varying lengths (amplicons). This study explores the characterization of LAMP amplicons using asymmetric flow field-flow fractionation (AF4) and their realization in LAMP - lateral flow assay (LFA) for point-of-care diagnostics. We examined LAMP products from the invA gene of Salmonella enterica using two specific primer sets and three methods: fluorescent staining with SYBR Green, electrophoretic detection, and AF4.

View Article and Find Full Text PDF
Article Synopsis
  • - A new bimetallic nanorod structure was created using a Raman reporter to enhance the detection of the insecticide fipronil in a specific immunoassay technique called SERS-LFIA.
  • - This method achieved a very low detection limit for fipronil at 4.6 pg/mL and is the first of its kind specifically for this insecticide, demonstrating effectiveness in real food samples like cucumber and apple juice.
  • - The use of antibodies to functionalize the SERS nanotag offers a flexible approach for enhancing various lateral flow immunoassays, improving their overall performance.
View Article and Find Full Text PDF

Tylosin (TYL) is a macrolide antibiotic widely used in animal husbandry. Due to associated health risks, there is a demand for sensitive methods for mass screening of TYL in products of animal origin. This article describes the development of lateral flow immunoassays (LFIAs) for TYL detection using direct (anti-TYL antibodies conjugated with nanoparticles) and indirect antibody labeling (anti-species antibodies conjugated with nanoparticles and combined with native anti-TYL antibodies).

View Article and Find Full Text PDF

Contamination of the environment by technogenic endocrine disrupting compounds (EDCs) becomes serious threat to public health. To effectively prevent this threat, it is necessary to improve analytical methods for EDCs to ensure mass, fast and productive monitoring. In the given work, a dual lateral flow test (LFT) is developed in the first time for simultaneous immunodetection of bisphenol A and dimethyl phthalate, priority EDCs releasing from plastic and belonging to different chemical classes.

View Article and Find Full Text PDF

and are relevant foodborne bacterial pathogens which may cause serious intoxications and infectious diseases in humans. In this study, a sensitive immunochromatographic analysis (ICA) for the simultaneous detection of these two pathogens was developed. For this, test strips containing two test zones with specific monoclonal antibodies (MAb) against lipopolysaccharides of and and one control zone with secondary antibodies were designed, and the double-assay conditions were optimized to ensure high analytical parameters.

View Article and Find Full Text PDF

Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments.

View Article and Find Full Text PDF

A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze-thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical gold nanoparticles ([Au]NPs) were synthesized and subsequently used as seeds to produce urchin-like Au@Pt nanoparticles ([Au@Pt]NPs) with an average diameter of 29.

View Article and Find Full Text PDF

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions.

View Article and Find Full Text PDF

Unlabelled: Adulteration of meat products is a serious problem in the modern society. Consumption of falsified meat products can be hazardous to health and/or lead to violating religious dietary principles. To identify such products, rapid and simple test systems for point-of-need detection are in demand along with complex laboratory methods.

View Article and Find Full Text PDF

Cheap chicken meat is often used as an undeclared substitute in meat products. In this study, two formats of the immunochromatographic assay (ICA) of immunoglobulins of class Y (IgY) as a biomarker for chicken authentication were developed. In both competitive ICA (cICA) and sandwich ICA (sICA), gold nanoparticles (GNP) were conjugated with anti-species antibodies.

View Article and Find Full Text PDF

This study was aimed at the sensitive immunodetection of porcine myoglobin (MG) as a species-specific biomarker in meat products. The enhanced lateral flow immunoassay (LFIA) was created in the sandwich format using monoclonal antibodies (Mab) with specificity to porcine MG and labeled by Prussian blue nanoparticles (PBNPs) as peroxidase-mimicking nanozymes. Signal amplification was provided by the colored product of oxidation catalyzed by the PBNPs.

View Article and Find Full Text PDF

Fluoroquinolone antibiotics are used to cure and protect bees and apiaries from infections. Consequently, they may contaminate honey and other products of beekeeping. In this study, a highly sensitive immunoenzyme assay (EIA) was for the first time developed for the determination of a fluoroquinolone flumequine (FLU) in honey.

View Article and Find Full Text PDF

CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements.

View Article and Find Full Text PDF

The analytical applications of antibodies are often associated with their immobilization on different carriers, which is accompanied by a loss of antigen-binding activity for a sufficient proportion of the bound antibodies. In contrast to data on plain carriers, minimal data are available on the properties of antibodies on the surfaces of nanoparticles. Protein antigens have been predominantly investigated, for which space restrictions do not allow them to occupy all active sites of immobilized antibodies.

View Article and Find Full Text PDF

In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.

View Article and Find Full Text PDF

In this study, we developed a sensitive immunochromatographic analysis (ICA) of the bacterial pathogen contaminating food products and causing foodborne illness. The ICA of was performed using Au@Pt nanozyme as a label ensuring both colorimetric detection and catalytic amplification of the analytical signal due to nanozyme peroxidase-mimic properties. The enhanced ICA enabled the detection of cells with the visual limit of detection (LOD) of 2 × 10 CFU/mL, which outperformed the LOD in the ICA with traditional gold nanoparticles by two orders of magnitude.

View Article and Find Full Text PDF

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb detection was developed.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally.

View Article and Find Full Text PDF

CRISPR/Cas12-based biosensors are emerging tools for diagnostics. However, their application of heterogeneous formats needs the efficient detection of Cas12 activity. We investigated DNA probes attached to the microplate surface and cleaved by Cas12a.

View Article and Find Full Text PDF