Publications by authors named "Dyment N"

Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.

View Article and Find Full Text PDF

Background: Collagen XI is a fibril-forming collagen typically associated with type II collagen tissues but is also expressed in type I collagen-rich tendons, especially during development. We previously showed that tendon-targeted (Scx-Cre) Col11a1 knockout mice have smaller tendons in adulthood with aberrant fibril structure and impaired mechanical properties. However, the manifestation of this phenotype is not clearly understood.

View Article and Find Full Text PDF

The work in this article summarizes findings from our group on key biochemical cues that govern the formation and repair of tendons and ligaments. Specifically, we summarize the journey that started with a serendipitous discovery that is now being translated into novel therapies to improve tendon-to-bone repair outcomes. This journey began with the discovery that the Hedgehog (Hh) signaling pathway was expressed within the enthesis during development and that its primary role was to promote fibrocartilage production and maturation.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding matrix molecular activities is key for developing regenerative strategies for TMJ disorders, with a focus on how collagen V impacts the growth and remodeling of condylar cartilage and the articular disc.
  • The study found that loss of collagen V significantly affects the proliferation and density of progenitor cells in condylar cartilage but has less impact on the disc cells, which behave more like fibroblasts.
  • Under conditions of altered occlusal loading, cartilage from mice lacking collagen V showed more degeneration and hypertrophy compared to wild-type, highlighting collagen V's critical role in condylar cartilage, suggesting its potential for enhancing TMJ regeneration in patients.
View Article and Find Full Text PDF

Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state.

View Article and Find Full Text PDF

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-β (TGFβ) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization.

View Article and Find Full Text PDF

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2.

View Article and Find Full Text PDF

Introduction: Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches.

View Article and Find Full Text PDF

Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown.

View Article and Find Full Text PDF

The early postnatal period represents a critical window for the maturation and development of orthopedic tissues, including those within the knee joint. To understand how mechanical loading impacts the maturational trajectory of the meniscus and other tissues of the hindlimb, perturbation of postnatal weight bearing was achieved through surgical resection of the sciatic nerve in neonatal mice at 1 or 14 days old. Sciatic nerve resection (SNR) produced significant and persistent disruptions in gait, leading to reduced tibial length and reductions in Achilles tendon mechanical properties.

View Article and Find Full Text PDF

Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H).

View Article and Find Full Text PDF

Understanding early patterning events in the extracellular matrix (ECM) formation can provide a blueprint for regenerative strategies to better recapitulate the function of native tissues. Currently, there is little knowledge on the initial, incipient ECM of articular cartilage and meniscus, two load-bearing counterparts of the knee joint. This study elucidated distinctive traits of their developing ECMs by studying the composition and biomechanics of these two tissues in mice from mid-gestation (embryonic day 15.

View Article and Find Full Text PDF

Externally applied forces, such as those generated through skeletal muscle contraction, are important to embryonic joint formation, and their loss can result in gross morphologic defects including joint fusion. While the absence of muscle contraction in the developing chick embryo leads to dissociation of dense connective tissue structures of the knee and ultimately joint fusion, the central knee joint cavitates whereas the patellofemoral joint does not in murine models lacking skeletal muscle contraction, suggesting a milder phenotype. These differential results suggest that muscle contraction may not have as prominent of a role in the growth and development of dense connective tissues of the knee.

View Article and Find Full Text PDF

Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g.

View Article and Find Full Text PDF

Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon.

View Article and Find Full Text PDF

Objective: While the role of hedgehog (Hh) signaling in promoting zonal fibrocartilage production during development is well-established, whether this pathway can be leveraged to improve tendon-to-bone repair in adults is unknown. Our objective was to genetically and pharmacologically stimulate the Hh pathway in cells that give rise to zonal fibrocartilaginous attachments to promote tendon-to-bone integration.

Design: Hh signaling was stimulated genetically via constitutive Smo (SmoM2 construct) activation of bone marrow stromal cells or pharmacologically via systemic agonist delivery to mice following anterior cruciate ligament reconstruction (ACLR).

View Article and Find Full Text PDF

The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing.

View Article and Find Full Text PDF

Tape-stabilized cryohistology is a powerful histological method to reinforce tissue samples during and after sectioning, enhancing the overall image quality. This technique has widely been applied to section mineralized small animal (, mice, rat, rabbit) specimens, but has only been sparsely implemented for large animal samples that have a greater tendency to tear due to their increased surface area. Here, we present an optimized protocol for tape-stabilized cryohistology of undecalcified minipig vertebral body, femoral head, and temporomandibular joint samples.

View Article and Find Full Text PDF

Resident macrophages exist in a variety of tissues, including tendon, and play context-specific roles in their tissue of residence. In this study, we define the spatiotemporal distribution and phenotypic profile of tendon resident macrophages and their crosstalk with neighboring tendon fibroblasts and the extracellular matrix (ECM) during murine tendon development, growth, and homeostasis. Fluorescent imaging of cryosections revealed that F4/80 tendon resident macrophages reside adjacent to Col1a1-CFP Scx-GFP fibroblasts within the tendon fascicle from embryonic development (E15.

View Article and Find Full Text PDF

Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone.

View Article and Find Full Text PDF

Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality.

View Article and Find Full Text PDF

Tendon function is dependent on proper organization and maintenance of the collagen I tissue matrix. Collagen V is a critical regulator of collagen I fibrils, and while prior studies have shown a negative impact of collagen V deficiency on tendon healing outcomes, these studies are confounded by collagen V deficiency through tendon development. The specific role of collagen V in regulating healing tendon properties is therefore unknown.

View Article and Find Full Text PDF

Anabolic agents, such as intermittent parathyroid hormone (PTH), exert their treatment efficacy through activation of two distinct bone formation processes, namely, remodeling-based bone formation (RBF, bone formation coupled with prior bone resorption) and modeling-based bone formation (MBF, bone formation without prior activation of bone resorption). However, if not followed by an antiresorptive agent, treatment benefit was quickly lost upon withdrawal from anabolic agents. By using in vivo micro-computed tomography imaging and multiplex cryohistology with sequential immunofluorescence staining, we investigated the temporal response of newly formed bone tissue from MBF and RBF and the preexisting bone tissue to withdrawal from PTH treatment and the associated cellular activity in an ovariectomized (OVX) rat model.

View Article and Find Full Text PDF

Tears in the rotator cuff are challenging to repair because of the complex, hypocellular, hypovascular, and movement-active nature of the tendon and its enthesis. Insulin-like Growth Factor-1 (IGF-1) is a promising therapeutic for this repair. However, its unstable nature, short half-life, and ability to disrupt homeostasis has limited its clinical translation.

View Article and Find Full Text PDF