Publications by authors named "Dylan Tinney"

Chronic wounds remain trapped in a pro-inflammatory state, with strategies targeted at inducing re-epithelialization and the proliferative phase of healing desirable. As a member of the lectin family, galectin-3 is implicated in the regulation of macrophage phenotype and epithelial migration. We investigated if local delivery of galectin-3 enhanced skin healing in a full-thickness excisional C57BL/6 mouse model.

View Article and Find Full Text PDF

Angiogenesis is an essential part of normal skin healing, re-establishing blood flow in developing granulation tissue. Non-healing skin wounds are associated with impaired angiogenesis and although the role of re-establishing macroscopic blood flow to limbs to prevent wound chronicity is well investigated, less is known about vascular alterations at the microcirculatory level. We hypothesised that significant phenotypic changes would be evident in blood vessels surrounding chronic skin wounds.

View Article and Find Full Text PDF

In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing.

View Article and Find Full Text PDF

In healthy individuals, the healing of soft tissues such as skin after pathological insult or post injury follows a relatively predictable and defined series of cell and molecular processes to restore tissue architecture and function(s). Healing progresses through the phases of hemostasis, inflammation, proliferation, remodeling, and concomitant with re-epithelialization restores barrier function. Soft tissue healing is achieved through the spatiotemporal interplay of multiple different cell types including neutrophils, monocytes/macrophages, fibroblasts, endothelial cells/pericytes, and keratinocytes.

View Article and Find Full Text PDF