β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias". Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R).
View Article and Find Full Text PDFThe canonical paradigm of GPCR signaling recognizes G proteins and β-arrestins as the two primary transducers that promote GPCR signaling. Recent evidence suggests the atypical chemokine receptor 3 (ACKR3) does not couple to G proteins, and β-arrestins are dispensable for some of its functions. Here, we employed proximity labeling to identify proteins that interact with ACKR3 in cells devoid of β-arrestin.
View Article and Find Full Text PDFSome G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane.
View Article and Find Full Text PDFSome G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3).
View Article and Find Full Text PDFIn the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs.
View Article and Find Full Text PDF