Emergency medical service (EMS) providers have a higher potential exposure to infectious agents than the general public (Nguyen et al., 2020, "Risk of COVID-19 Among Frontline Healthcare Workers and the General Community: A Prospective Cohort Study," Lancet Pub. Health, (9), pp.
View Article and Find Full Text PDFTransparent barriers were installed as a response to the SARS-COV-2 pandemic in many customer-facing industries. Transparent barriers are an engineering control that intercept particles traveling between customers and workers. Information on the effectiveness of these barriers against aerosols is limited.
View Article and Find Full Text PDFUltraviolet germicidal irradiation uses ultraviolet C (UV-C) energy to disinfect surfaces in clinical settings. Verifying that the doses of UV-C energy received by surfaces are adequate for proper disinfection levels can be difficult and expensive. Our study aimed to test commercially available colorimetric labels, sensitive to UV-C energy, and compare their precision with an accepted radiometric technique.
View Article and Find Full Text PDFThe protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance.
View Article and Find Full Text PDFThis study evaluated a novel robotic direct reading method that used a real-time location system to measure the spatial-concentration distribution of volatile organic compounds (VOCs) in a chemistry laboratory. The CEMWIP II is a custom-made sensor that measures VOCs, temperature, humidity, and location, sending data wirelessly in real time to a remote location for display and storage. In this study, the CEMWIP II device was mounted on a robotic platform to create a CEMWIP II-mobile platform.
View Article and Find Full Text PDFAmbulances are frequently contaminated with infectious microorganisms shed by patients during transport that can be transferred to subsequent patients and emergency medical service workers. Manual decontamination is tedious and time-consuming, and persistent contamination is common even after cleaning. Ultraviolet germicidal irradiation (UVGI) has been proposed as a terminal disinfection method for ambulance patient compartments.
View Article and Find Full Text PDF