Comp Biochem Physiol C Toxicol Pharmacol
June 2024
Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin.
View Article and Find Full Text PDFFEMS Microbiol Ecol
October 2023
Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite advances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.
View Article and Find Full Text PDFHigh-throughput sequencing approaches have revolutionized how we study animal diets by enabling the detection of dietary components from the metabarcoding of DNA in excrement. Mitochondrial cytochrome oxidase C subunit I (mtCOI) DNA metabarcoding is commonly used to study the diets of arthropod-feeding animals; however, this approach is susceptible to nontarget amplification of the consumer species mtCOI locus. Nontarget amplification is often an unforeseen complication that can drastically reduce the quality and utility of the results generated by high-throughput amplicon sequencing.
View Article and Find Full Text PDFThe microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus , we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions.
View Article and Find Full Text PDF