Publications by authors named "Dylan Layfield"

Spatial memory encoding depends in part on cholinergic modulation. How acetylcholine supports spatial memory encoding is not well understood. Prior studies indicate that acetylcholine release is correlated with exploration, including epochs of rearing onto hind legs.

View Article and Find Full Text PDF

Spatial memory encoding depends in part on cholinergic modulation. How acetylcholine supports spatial memory encoding is not well understood. Prior studies indicate that acetylcholine release is correlated with exploration, including epochs of rearing onto hind legs.

View Article and Find Full Text PDF

Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g.

View Article and Find Full Text PDF

Spatial working memory is important for foraging and navigating the environment. However, its neural underpinnings remain poorly understood. The hippocampus, known for its spatial coding and involvement in spatial memory, is widely understood to be necessary for spatial working memory when retention intervals increase beyond seconds into minutes.

View Article and Find Full Text PDF

Inactivation of the rodent medial prefrontal cortex (mPFC) and hippocampus or disconnection of the hippocampus from the mPFC produces deficits in spatial working memory tasks. Previous studies have shown that delay length determines the extent to which mPFC and hippocampus functionally interact, with both structures being necessary for tasks with longer delays and either structure being sufficient for tasks with shorter delays. In addition, inactivation of the nucleus reuniens (Re)/rhomboid nucleus (Rh) of the thalamus, which has bidirectional connections with the mPFC and hippocampus, also produces deficits in these tasks.

View Article and Find Full Text PDF

The rodent medial prefrontal cortex (mPFC) has been implicated in working memory function; lesions and inactivation of this region have been shown to result in impairments in spatial working memory (WM) tasks. Our laboratory has developed a tactile-visual conditional discrimination (CD) task, which uses floor insert cues to signal the correct goal-arm choice in a T maze. This task can be manipulated by altering the floor insert cues to be present throughout the trial (CDSTANDARD) or to be present only at the beginning of the trial (CDWM), thus making the task either WM-independent or WM-dependent, respectively.

View Article and Find Full Text PDF