Hypothesis: Despite advances in understanding the R5 (SSKKSGSYSGKSGSKRRIL) peptide-driven bio-silica process, there remains significant discrepancies regarding the physicochemical characterization and the self-assembling mechanistic driving forces of the supramolecular R5 template. This paper investigates the self-assembly of R5 as a function of monovalent (sodium chloride) and multivalent salt (phosphate) to determine if assembly is phosphate ion concentration dependent. Additionally, we hypothesize that the assembled R5 aggregates do not resemble a micelle or unimer structure as proposed in current literature.
View Article and Find Full Text PDFA polymeric corona consisting of an alkyl-glycolic acid ethoxylate (CEO) surfactant offers a promising approach toward endowing proteins with thermotropic phase behavior and hyperthermal activity. Typically, preparation of protein-surfactant biohybrids is performed chemical modification of acidic residues followed by electrostatic conjugation of an anionic surfactant to encapsulate single proteins. While this procedure has been applied to a broad range of proteins, modification of acidic residues may be detrimental to function for specific enzymes.
View Article and Find Full Text PDFSilica materials attract an increasing amount of interest in (fundamental) research, and find applications in, for example, sensing, catalysis, and drug delivery. As the properties of these (nano)materials not only depend on their chemistry but also their size, shape, and surface area, the controllable synthesis of silica is essential for tailoring the materials to specific applications. Advantageously, bioinspired routes for silica production are environmentally friendly and straightforward since the formation process is spontaneous and proceeds under mild conditions.
View Article and Find Full Text PDFEnzymes are widely employed to reduce the environmental impact of chemical industries as biocatalysts improve productivity and offer high selectively under mild reaction conditions in a diverse range of chemical transformations. The poor stability of biomacromolecules under reaction conditions is often a critical bottleneck to their application. Protein engineering or immobilization onto solid substrates may remedy this limitation but, unfortunately, this is often at the expense of catalytic potency or substrate specificity.
View Article and Find Full Text PDF