Dynamic bonds are essential structural ingredients of dynamic covalent chemistry that involve reversible cleavage and formation of bonds. Herein, we explore the electronic characteristics of Se-N bonds in the organo-selenium antioxidant ebselen and its derivatives for their propensity to function as dynamic covalent bonds by employing high-resolution X-ray quantum crystallography and complementary computational studies. An analysis of the experimentally reconstructed X-ray wavefunctions reveals the salient electronic features of the Se-N bonds with very low electron density localized at the bonding region and a positive Laplacian value at the bond critical point.
View Article and Find Full Text PDFBackground: Identifying the molecular formula and fragmentation reactions of an unknown compound from its mass spectrum is crucial in areas such as natural product chemistry and metabolomics. We propose a method for identifying the correct candidate formula of an unidentified natural product from its mass spectrum. The method involves scoring the plausibility of parent candidate formulae based on a parent subformula graph (PSG), and two possible metrics relating to the number of edges in the PSG.
View Article and Find Full Text PDFIn X-ray constrained wavefunction (XCW) fitting, external information, such as electron correlation and polarization, is included into a single-determinantal isolated-molecule wavefunction. In a first step, we show that the extraction of these two physical effects by XCW fitting is complete and accurate by comparing to theoretical reference calculations. In a second step, we show that fitting to data from single-crystal x-ray diffraction measurements provides the same results qualitatively and how the physical effects can be separated, although always inherently convolved in the experiment.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2022
The Hirshfeld atom-based X-ray constrained wavefunction fitting (HA-XCW) procedure is tested for its reproducibility, and the information content of the fitted wavefunction is critically assessed. Fourteen different α-oxalic acid dihydrate data sets are used for this purpose, and the first joint fitting to 12 of these data sets is reported. There are systematic features in the electron density obtained from all data sets which agree with higher level benchmark calculations, but there are also many other strong systematic features which disagree with the reference calculations, most notably those associated with the electron density near the nuclei.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2022
The X-ray constrained wavefunction (XCW) procedure for obtaining an experimentally reconstructed wavefunction from X-ray diffraction data is reviewed. The two-center probability distribution model used to perform nuclear-position averaging in the original paper [Grimwood & Jayatilaka (2001). Acta Cryst.
View Article and Find Full Text PDFStatic structure factors and charge density for metallic aluminum were investigated by periodic calculations using atom-centered Gaussian-type basis sets with the Perdew-Burke-Ernzerhof (PBE) functional implemented in the CRYSTAL14 package and X-ray constrained wave function (XCW) fitting. The effects of additional diffuse d and f basis functions on structure factors were compared with synchrotron powder X-ray diffraction and quantitative convergent electron beam diffraction data. Changes in structure factors from an independent atom model at 022, 113, and 222 reflections introduced d and f basis functions similar to those of the experimental data.
View Article and Find Full Text PDFis a native cross-platform program supported on Windows, MacOS and Linux with the primary function of visualization and investigation of molecular crystal structures, especially through the decorated Hirshfeld surface and its corresponding two-dimensional fingerprint, and through the visualization of void spaces in the crystal via isosurfaces of the promolecule electron density. Over the past decade, significant changes and enhancements have been incorporated into the program, such as the capacity to accurately and quickly calculate and visualize quantitative intermolecular interactions and, perhaps most importantly, the ability to interface with the and programs to calculate quantum-mechanical properties of molecules. The current version, , incorporates these and other changes, and the software can be downloaded and used free of charge for academic research.
View Article and Find Full Text PDFAlthough hydrogen bonding is one of the most important motifs in chemistry and biology, H-atom parameters are especially problematic to refine against X-ray diffraction data. New developments in quantum crystallography offer a remedy. This article reports how hydrogen bonds are treated in three different quantum-crystallographic methods: Hirshfeld atom refinement (HAR), HAR coupled to extremely localized molecular orbitals and X-ray wavefunction refinement.
View Article and Find Full Text PDFThe relationship between the structure and the properties of a drug or material is a key concept of chemistry. Knowledge of the three-dimensional structure is considered to be of such importance that almost every report of a new chemical compound is accompanied by an X-ray crystal structure - at least since the 1970s when diffraction equipment became widely available. Crystallographic software of that time was restricted to very limited computing power, and therefore drastic simplifications had to be made.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
January 2021
The capability of X-ray constrained wavefunction (XCW) fitting to introduce relativistic effects into a non-relativistic wavefunction is tested. It is quantified how much of the reference relativistic effects can be absorbed in the non-relativistic XCW calculation when fitted against relativistic structure factors of a model HgH molecule. Scaling of the structure-factor sets to improve the agreement statistics is found to introduce a significant systematic error into the XCW fitting of relativistic effects.
View Article and Find Full Text PDFThe crystal interaction density is generally assumed to be a suitable measure of the polarization of a low-molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density.
View Article and Find Full Text PDFX-ray diffraction is the main source of three-dimensional structural information. In total, more than 1.5 million crystal structures have been refined and deposited in structural databanks (PDB, CSD and ICSD) to date.
View Article and Find Full Text PDFThe first aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
September 2019
Quantum crystallographic refinement of heavy-element-containing compounds is a challenge, because many physical effects have to be accounted for adequately. Here, the impact and magnitude of relativistic effects are compared with those of electron correlation, polarization through the environment, choice of basis set and treatment of thermal motion effects on the structure factors of diphenylmercury(II) [Hg(Ph)] and dicyanomercury(II) [Hg(CN)]. Furthermore, the individual atomic contributions to the structure factors are explored in detail (using Mulliken population analysis and the exponential decay of atomic displacement parameters) to compare the contributions of lighter atoms, especially hydrogen atoms, against mercury.
View Article and Find Full Text PDFMost structure-based drug discovery methods utilize crystal structures of receptor proteins. Crystal engineering, on the other hand, utilizes the wealth of chemical information inherent in small-molecule crystal structures in the Cambridge Structural Database (CSD). We show that the interaction surfaces and shapes of molecules in experimentally determined small-molecule crystal structures can serve as effective tools in drug discovery.
View Article and Find Full Text PDFThe question of whether intermolecular interactions in crystals originate from localized atom⋯atom interactions or as a result of holistic molecule⋯molecule close packing is a matter of continuing debate. In this context, the newly introduced Roby-Gould bond indices are reported for intermolecular 'σ-hole' interactions, such as halogen bonding and chalcogen bonding, and compared with those for hydrogen bonds. A series of 97 crystal systems exhibiting these interaction motifs obtained from the Cambridge Structural Database (CSD) has been analysed.
View Article and Find Full Text PDFCovalency and ionicity are orthogonal rather than antipodal concepts. We demonstrate for the case of siloxane systems [R Si-(O-SiR ) -O-SiR ] that both covalency and ionicity of the Si-O bonds impact on the basicity of the Si-O-Si linkage. The relationship between the siloxane basicity and the Si-O bond character has been under debate since previous studies have presented conflicting explanations.
View Article and Find Full Text PDFIn the family of metallocenes, MgCp* (Cp* = pentamethylcyclopentadienyl) exhibits a regular linear sandwich structure, whereas CaCp* is bent in both the gas phase and solid state. Bending is typically observed for metal ions which possess a lone pair. Here, we investigate which electronic differences cause the bending in complexes lacking lone pairs at the metal atoms.
View Article and Find Full Text PDFCrystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated.
View Article and Find Full Text PDFThere is a great variety of bond analysis tools that aim to extract information on the bonding situation from the molecular wavefunction. Because none of these can fully describe bonding in all of its complexity, it is necessary to regard a balanced selection of complementary analysis methods to obtain a reliable chemical conclusion. This is, however, not a feasible approach in most studies because it is a time-consuming procedure.
View Article and Find Full Text PDFUsing four different benchmark sets of molecular crystals, we establish the level of confidence for lattice energies estimated using CE-B3LYP model energies and experimental crystal structures. [ IUCrJ 2017 , 4 , 575 - 587 10.1107/S205225251700848X .
View Article and Find Full Text PDFHirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, (-H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of (-H) values obtained from HAR.
View Article and Find Full Text PDFIn this work, the quality of the electron density in crystals reconstructed by the multipolar model (MM) and by X-ray wavefunction refinement (XWR) is tested on a set of high-resolution X-ray diffraction data sets of four amino acids and six tripeptides. It results in the first thorough validation of XWR. Agreement statistics, figures of merit, residual- and deformation-density maps, as well as atomic displacement parameters are used to measure the quality of the reconstruction relative to the measured structure factors.
View Article and Find Full Text PDF