The chloride mass balance (CMB) method is widely used to estimate long-term rates of groundwater recharge. In regions where surface water runoff is negligible, recharge can be estimated using measurements of chloride concentrations of groundwater and precipitation, and an estimate of long-term average rainfall. This paper presents the Chloride Mass Balance Estimator of Australian Recharge (CMBEAR), a Jupyter (Python) Notebook that is set up to rapidly apply the CMB method using gridded maps of chloride deposition rates across the Australian continent.
View Article and Find Full Text PDFStreams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems.
View Article and Find Full Text PDFGroundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction-dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds.
View Article and Find Full Text PDFHeat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers.
View Article and Find Full Text PDFObtaining reliable estimates of vertical groundwater flows remains a challenge but is of critical importance to the management of groundwater resources. When large scale land clearing or groundwater extraction occurs, methods based on water table fluctuations or water chemistry are unreliable. As an alternative, a number of methods based on temperature-depth (T-z) profiles are available to provide vertical groundwater flow estimates from which recharge rates may be calculated.
View Article and Find Full Text PDFA comparison of groundwater velocity in heterogeneous aquifers estimated from hydraulic methods, heat and solute tracers was made using numerical simulations. Aquifer heterogeneity was described by geostatistical properties of the Borden, Cape Cod, North Bay, and MADE aquifers. Both heat and solute tracers displayed little systematic under- or over-estimation in velocity relative to a hydraulic control.
View Article and Find Full Text PDFDecline in regional water tables (RWT) can cause losing streams to disconnect from underlying aquifers. When this occurs, an inverted water table (IWT) will develop beneath the stream, and an unsaturated zone will be present between the IWT and the RWT. The IWT marks the base of the saturated zone beneath the stream.
View Article and Find Full Text PDF