The purpose of this study was to evaluate the effect of acrylated hydroxyazobenzene (AHA) copolymers in a composite-resin matrix on Streptococcus mutans (SM) biofilms. The AHA was synthesized and polymerized within a bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate (bisGMA:TEGDMA) matrix while bisGMA:TEGDMA discs served as controls. The cytotoxicity of AHA was determined using a cell viability assay.
View Article and Find Full Text PDFAdv Mater Interfaces
August 2020
Strategies to engineer surfaces that can enable the selective inhibition of bacterial pathogens while preserving beneficial microbes can serve as tools to precisely edit the microbiome. In the oral microbiome, this selectivity is crucial in preventing the proliferation of cariogenic species such as (). In this communication, coatings consisting of a covalently tethered hydroxylated azobenzene (OH-AAZO) on glassy acrylic resins are studied and characterized for their ability to selectively prevent the attachment and growth of oral biofilms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Antibacterial strategies sans antibiotic drugs have recently garnered much interest as a mechanism by which to inhibit biofilm formation and growth on surfaces due to the rise of antibiotic-resistant bacteria. Based on the photofluidization of azobenzenes, we demonstrate for the first time the ability achieve up to a 4 log reduction in bacterial biofilms by opto-mechanically activating the disruption and dispersion of biofilms. This unique strategy with which to enable biofilm removal offers a novel paradigm with which to combat antibiotic resistance.
View Article and Find Full Text PDF