Due to the high variation in viral surface properties, a platform method for virus purification is still lacking. A potential alternative to the high-cost conventional methods is aqueous two-phase systems (ATPSs). However, optimizing virus purification in ATPS requires a large experimental design space, and the optimized systems are generally found to operate at high ATPS component concentrations.
View Article and Find Full Text PDFBackground: Therapeutic protein manufacturing would benefit by having an arsenal of ways to inactivate viruses. There have been many publications on the virus inactivation ability of arginine at pH 4.0, but the mechanism of this inactivation is unknown.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2019
Viral particle purification is a challenge due to the complexity of the broth, the particle size, and the need to maintain virus activity. Aqueous two-phase systems (ATPSs) are a viable alternative for the currently used and expensive downstream processes. This work investigated the purification of two non-enveloped viruses, porcine parvovirus (PPV), and human rhinovirus (HRV) at various ATPS tie lines.
View Article and Find Full Text PDFTraditional virus detection methods require ligands that bind to either viral capsid proteins or viral nucleic acids. Ligands are typically antibodies or oligonucleotides and they are expensive, have limited chemical stability, and can only detect one specific type of virus at a time. Here, the biochemical surface properties of viruses are exploited for ligand-free, nonspecific virus detection.
View Article and Find Full Text PDF