Publications by authors named "Dylan E Jones"

The acylcarnitines comprise a wide range of acyl groups linked via an ester bond to the hydroxyl group of L-carnitine. Mass spectrometry methods are capable of measuring the relative abundance of hundreds of acylcarnitines in a single drop of blood. As such, acylcarnitines can serve as sensitive biomarkers of disease.

View Article and Find Full Text PDF

A growing number of inborn errors of metabolism (IEM) have been identified that manifest 3-methylglutaconic (3MGC) aciduria as a phenotypic feature. In primary 3MGC aciduria, IEM-dependent deficiencies in leucine pathway enzymes prevent catabolism of -3MGC CoA. Consequently, this metabolite is converted to 3MGC acid and excreted in urine.

View Article and Find Full Text PDF

3-Methylglutaconic (3MGC) aciduria occurs in numerous inborn errors associated with compromised mitochondrial energy metabolism. In these disorders, 3MGC CoA is produced de novo from acetyl CoA in three steps with the final reaction catalysed by 3MGC CoA hydratase (AUH). In in vitro assays, whereas recombinant AUH dehydrated 3-hydroxy-3-methylglutaryl (HMG) CoA to 3MGC CoA, free CoA was also produced.

View Article and Find Full Text PDF

Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model.

View Article and Find Full Text PDF

A growing number of inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism manifest an unusual phenotypic feature: 3-methylglutaconic (3MGC) aciduria. Two major categories of 3MGC aciduria, primary and secondary, have been described. In primary 3MGC aciduria, IEMs in 3MGC CoA hydratase (AUH) or HMG CoA lyase block leucine catabolism, resulting in a buildup of pathway intermediates, including 3MGC CoA.

View Article and Find Full Text PDF

3-Methylglutaconic (3MGC) aciduria is a common phenotypic feature of a growing number of inborn errors of metabolism. "Primary" 3MGC aciduria is caused by deficiencies in leucine pathway enzymes while "secondary" 3MGC aciduria results from inborn errors of metabolism that impact mitochondrial energy production. The metabolic precursor of 3MGC acid is -3MGC CoA, an intermediate in the leucine catabolism pathway.

View Article and Find Full Text PDF

3-methylglutaconic (3MGC) aciduria is associated with a growing number of discrete inborn errors of metabolism. Herein, an antibody-based approach to detection/quantitation of 3MGC acid has been pursued. When trans-3MGC acid conjugated keyhole limpet hemocyanin (KLH) was inoculated into rabbits a strong immune response was elicited.

View Article and Find Full Text PDF

3-methylglutaric (3MG) acid is a conspicuous C6 dicarboxylic organic acid classically associated with two distinct leucine pathway enzyme deficiencies. 3MG acid is excreted in urine of individuals harboring deficiencies in 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HMGCL) or 3-methylglutaconyl CoA hydratase (AUH). Whereas 3MG CoA is not part of the leucine catabolic pathway, it is likely formed via a side reaction involving reduction of the α-ß trans double bond in the leucine pathway intermediate, 3-methylglutaconyl CoA.

View Article and Find Full Text PDF

Macrocyclic triamine disulfonamides can be synthesized by double Tsuji-Trost -allylation reaction of open-chain disulfonamides with 2-alkylidene-1,3-propanediyl bis(carbonates). The previously used Atkins-Richman macrocyclization method generally gives lower yields and requires more tedious purification of the product. Solvent, palladium source, ligand, and concentration have all been varied to optimize the yields of two key 12-membered ring bioactive compounds, CADA and VGD020.

View Article and Find Full Text PDF