Rationale: Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and several cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells (ECs). Previous studies have shown that Foxo1 knockout in mice results in embryonic lethality at E11 because of impaired vascular development.
View Article and Find Full Text PDFRNA editing by A-to-I modification is a widespread mechanism in complex organisms that leads to the posttranscriptional alteration of protein coding as well as noncoding sequences. MiRNA transcripts have been recognized as a major target for RNA editing enzymes, and single-nucleotide changes through editing can impact the biogenesis of mature miRNAs, as well as the target specificity of the regulatory RNA. Bona fide A-to-I RNA editing events are validated experimentally through parallel analysis of genomic DNA and transcribed sequences of miRNA genes isolated from the same specimen through gene-specific amplification and sequencing of endogenous transcripts.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) are DNA sequence variations that can affect the expression or function of genes. As a result, they may lead to phenotypic differences between individuals, such as susceptibility to disease, response to medications, and disease progression. Millions of SNPs have been mapped within the human genome providing a rich resource for genetic variation studies.
View Article and Find Full Text PDF